
CS 2351 – Artificial Intelligence UNIT I

Page 1 of 116 CSE– Dhaanish Ahmed College of Engineering

Subject Code : CS 2351 Subject : Artificial Intelligence

CS2351 ARTIFICIAL INTELLIGENCE

UNIT I PROBLEM SOLVING
Introduction – Agents – Problem formulation – uninformed search strategies – heuristics
– informed search strategies – constraint satisfaction

UNIT II LOGICAL REASONING
Logical agents – propositional logic – inferences – first-order logic – inferences in
firstorder
logic – forward chaining – backward chaining – unification – resolution

UNIT III PLANNING
Planning with state-space search – partial-order planning – planning graphs – planning
and acting in the real world

UNIT IV UNCERTAIN KNOWLEDGE AND REASONING
Uncertainty – review of probability - probabilistic Reasoning – Bayesian networks –
inferences in Bayesian networks – Temporal models – Hidden Markov models

UNIT V LEARNING
Learning from observation - Inductive learning – Decision trees – Explanation based
learning – Statistical Learning methods - Reinforcement Learning

TEXT BOOK:
1. S. Russel and P. Norvig, “Artificial Intelligence – A Modern Approach”, Second
Edition, Pearson Education, 2003.
REFERENCES:
1. David Poole, Alan Mackworth, Randy Goebel, ”Computational Intelligence : a logical
approach”, Oxford University Press, 2004.
2. G. Luger, “Artificial Intelligence: Structures and Strategies for complex problem
solving”, Fourth Edition, Pearson Education, 2002.
3. J. Nilsson, “Artificial Intelligence: A new Synthesis”, Elsevier Publishers, 1998.

CS 2351 – Artificial Intelligence UNIT I

Page 2 of 116 CSE– Dhaanish Ahmed College of Engineering

Artificial Intelligence – An Introduction

What is AI?
Artificial intelligence is the study of how to make computers do things which, at
the moment people do better.
Some definitions of artificial intelligence, organized into four categories

I. Systems that think like humans

1. "The exciting new effort to make computers think machines with minds, in the
full and literal sense." (Haugeland, 1985)

2. "The automation of activities that we associate with human thinking, activities
such as decision-making, problem solving, learning" (Bellman, 1978)

II. Systems that act like humans

3. "The art of creating machines that performs functions that require intelligence
when performed by people." (Kurzweil, 1990)

4. "The study of how to make computers do things at which, at the moment,
people are better." (Rich and Knight, 1991)

III. Systems that think rationally

5. "The study of mental faculties through the use of computational models."
(Chamiak and McDermott, 1985)

6. "The study of the computations that make it possible to perceive, reason, and
act." (Winston, 1992)

IV. Systems that act rationally

7. "Computational Intelligence is the study of the design of intelligent agents."
(Poole et al., 1998)

8. "AI is concerned with intelligent behavior in artifacts." (Nilsson, 1998)
The definitions on the 1, 2, 3, 4 measure success in terms of human performance,
whereas the ones on the 5, 6, 7, 8 measure against an ideal concept of intelligence.

CS 2351 – Artificial Intelligence UNIT I

Page 3 of 116 CSE– Dhaanish Ahmed College of Engineering

A system is rational if it does the "right thing," given what it knows.

The term AI is defined by each author in its own perceive, leads to four
important categories

i. Acting humanly: The Turing Test approach
ii. Thinking humanly: The cognitive modeling approach

iii. Thinking rationally: The "laws of thought" approach
iv. Acting rationally: The rational agent approach

(i) Acting humanly: The Turing Test approach

To conduct this test, we need two people and the machine to be evaluated.
One person plays the role of the interrogator, who is in a separate room from the
computer and the other person. The interrogator can ask questions of either the
person or the computer but typing questions and receiving typed responses.
However, the interrogator knows them only as A and B and aims to determine
which the person is and which is the machine.

The goal of the machine is to fool the interrogator into believing that is the

person. If the machine succeeds at this, then we will conclude that the machine is
acting humanly. But programming a computer to pass the test provides plenty to
work on, to possess the following capabilities.

♦ Natural language processing to enable it to communicate successfully in
English.

♦ Knowledge representation to store what it knows or hears;
♦ Automated reasoning to use the stored information to answer questions

and to draw new conclusions
♦ Machine learning to adapt to new circumstances and to detect and

extrapolate patterns.

CS 2351 – Artificial Intelligence UNIT I

Page 4 of 116 CSE– Dhaanish Ahmed College of Engineering

Total Turing Test: the test which includes a video so that the interrogator can
test the perceptual abilities of the machine. To undergo the total Turing test, the
computer will need

♦ computer vision to perceive objects, and
♦ robotics to manipulate objects and move about

(ii) Thinking humanly: The cognitive modeling approach

To construct a machines program to think like a human, first it requires
the knowledge about the actual workings of human mind. After completing the
study about human mind it is possible to express the theory as a computer
program.

If the program’s inputs/output and timing behavior matched with the
human behavior then we can say that the program’s mechanism is working like a
human mind.

Example: General Problem Solver (GPS) – A problem solvers always keeps
track of human mind regardless of right answers. The problem solver is contrast
to other researchers, because they are concentrating on getting the right answers
regardless of the human mind.

An Interdisciplinary field of cognitive science uses computer models from
AI and experimental techniques from psychology to construct the theory of the
working of the human mind.

(iii) Thinking rationally: The "laws of thought" approach

Laws of thought were supposed to govern the operation of the mind and their
study initiated the field called logic

Example 1:"Socrates is a man; All men are mortal; therefore, Socrates is mortal."

Example 2:“Ram is a student of III year CSE; All students are good in III year
CSE; therefore, Ram is a good student”

Syllogisms : A form of deductive reasoning consisting of a major premise, a
minor premise, and a conclusion

Syllogisms provided patterns for argument structures that always yielded correct
conclusions when given correct premises

http://grammar.about.com/od/d/g/deductionterm.htm�
http://grammar.about.com/od/pq/g/premiseterm.htm�

CS 2351 – Artificial Intelligence UNIT I

Page 5 of 116 CSE– Dhaanish Ahmed College of Engineering

There are two main obstacles to this approach.

1. It is not easy to take informal knowledge and state it in the formal terms
required by logical notation, particularly when the knowledge is less.

2. There is a big difference between being able to solve a problem "in

principle" and doing so in practice

(iv) Acting rationally: The rational agent approach

An agent is just something that acts. A rational agent is one that acts so as to
achieve the best outcome or, when there is uncertainty, the best expected
outcome. The study of rational agent has two advantages.

1. Correct inference is selected and applied
2. It concentrates on scientific development rather than other methods.

Philosophy(428 B.C. – present)

Foundation of Artificial Intelligence

AI derives the features from Philosophy, Mathematics, Psychology, Computer
Engineering, Linguistics topics.

Aristotle (384-322 B.C.) was the first to formulate a precise set of laws governing
the rational part of the mind. He developed an informal system of syllogisms for
proper reasoning, which allowed one to generate conclusions mechanically,
given initial premises.

Mathematics (c. 800-present)

♦ What are the formal rules to draw valid conclusions?
♦ What can be computed?
♦ How do we reason with uncertain information?

Philosophers staked out most of the important ideas of k1, but the leap to a
formal science required a level of mathematical formalization in three
fundamental areas: logic, computation, and probability

Economics (1776-present)

CS 2351 – Artificial Intelligence UNIT I

Page 6 of 116 CSE– Dhaanish Ahmed College of Engineering

♦ How should we make decisions so as to maximize payoff?
♦ How should we do this when others may not go along?

The science of economics got its start in 1776, when Scottish philosopher Adam
Smith (1723-1790) published An Inquiry into the Nature and Causes of the Wealth of
Nations. While the ancient Greeks and others had made contributions to
economic thought, Smith was the first to treat it as a science, using the idea that
economies can be thought of as consisting of individual agents maximizing their
own economic well-being

Neuroscience (1861-present)

♦ How do brains process information?

Neuroscience is the study of the nervous system, particularly the brain. The exact
way in which the brain enables thought is one of the great mysteries of science. It
has been appreciated for thousands of years that the brain is somehow involved
in thought, because of the evidence that strong blows to the head can lead to
mental incapacitation

 Computer Human Brain
Computational units
Storage units

Cycle time
Bandwidth
Memory updates/sec

1 CPU,108 gates
1010 bits RAM
1011 bits disk
10-9 sec
1010 bits/sec
10

10

9

11 neurons
1011 neurons
1014 synapses
10-3 sec
1014 bits/sec
1014

Comparison of the raw computational resources and brain.

Psychology (1879 – present)

The origin of scientific psychology are traced back to the wok if German
physiologist Hermann von Helmholtz(1821-1894) and his student Wilhelm
Wundt(1832 – 1920). In 1879, Wundt opened the first laboratory of experimental
psychology at the University of Leipzig. In US,the development of computer
modeling led to the creation of the field of cognitive science. The field can be
said to have started at the workshop in September 1956 at MIT.

Computer engineering (1940-present)

For artificial intelligence to succeed, we need two things: intelligence and an
artifact. The computer has been the artifact of choice.A1 also owes a debt to the

CS 2351 – Artificial Intelligence UNIT I

Page 7 of 116 CSE– Dhaanish Ahmed College of Engineering

software side of computer science, which has supplied the operating systems,
programming languages, and tools needed to write modern programs

Control theory and Cybernetics (1948-present)

Ktesibios of Alexandria (c. 250 B.c.) built the first self-controlling machine: a
water clock with a regulator that kept the flow of water running through it at a
constant, predictable pace. Modern control theory, especially the branch known
as stochastic optimal control, has as its goal the design of systems that maximize
an objective function over time.

Linguistics (1957-present)

Modem linguistics and AI, then, were "born" at about the same time, and grew
up together, intersecting in a hybrid field called computational linguistics or
natural language processing.

History of Artificial Intelligence

The gestation of artificial intelligence (1943-1955)

There were a number of early examples of work that can be characterized as AI,
but it was Alan Turing who first articulated a complete vision of A1 in his 1950
article "Computing Machinery and Intelligence." Therein, he introduced the
Turing test, machine learning, genetic algorithms, and reinforcement learning.

The birth of artificial intelligence (1956)

McCarthy convinced Minsky, Claude Shannon, and Nathaniel Rochester to help
him bring together U.S. researchers interested in automata theory, neural nets,
and the study of intelligence. They organized a two-month workshop at
Dartmouth in the summer of 1956. Perhaps the longest-lasting thing to come out
of the workshop was an agreement to adopt McCarthy's new name for the field:
artificial intelligence.

Early enthusiasm, great expectations (1952-1969)

The early years of A1 were full of successes-in a limited way. General Problem
Solver (GPS) was a computer program created in 1957 by Herbert Simon and
Allen Newell to build a universal problem solver machine. The order in which
the program considered subgoals and possible actions was similar to that in
which humans approached the same problems. Thus, GPS was probably the first
program to embody the "thinking humanly" approach. At IBM, Nathaniel

CS 2351 – Artificial Intelligence UNIT I

Page 8 of 116 CSE– Dhaanish Ahmed College of Engineering

Rochester and his colleagues produced some of the first A1 programs. Herbert
Gelernter (1959) constructed the Geometry Theorem Prover, which was able to
prove theorems that many students of mathematics would find quite tricky.

Lisp was invented by John McCarthy in 1958 while he was at the Massachusetts
Institute of Technology (MIT). In 1963, McCarthy started the AI lab at Stanford.
Tom Evans's ANALOGY program (1968) solved geometric analogy problems
that appear in IQ tests, such as the one in Figure

Fig : The Tom Evan’s ANALOGY program could solve geometric analogy
problems as shown.
A dose of reality (1966-1973)

From the beginning, AI researchers were not shy about making predictions of
their coming successes. The following statement by Herbert Simon in 1957 is
often quoted:

“It is not my aim to surprise or shock you-but the simplest way I can summarize
is to say that there are now in the world machines that think, that learn and that
create. Moreover, their ability to do these things is going to increase rapidly
until-in a visible future-the range of problems they can handle will be
coextensive with the range to which the human mind has been applied.

Knowledge-based systems: The key to power? (1969-1979)

Dendral was an influential pioneer project in artificial intelligence (AI) of the
1960s, and the computer software expert system that it produced. Its primary
aim was to help organic chemists in identifying unknown organic molecules, by
analyzing their mass spectra and using knowledge of chemistry. It was done at
Stanford University by Edward Feigenbaum, Bruce Buchanan, Joshua Lederberg,
and Carl Djerassi.

CS 2351 – Artificial Intelligence UNIT I

Page 9 of 116 CSE– Dhaanish Ahmed College of Engineering

AI becomes an industry (1980-present)

In 1981, the Japanese announced the "Fifth Generation" project, a 10-year plan to
build intelligent computers running Prolog. Overall, the A1 industry boomed
from a few million dollars in 1980 to billions of dollars in 1988.

The return of neural networks (1986-present)

Psychologists including David Rumelhart and Geoff Hinton continued the study
of neural-net models of memory.

AI becomes a science (1987-present)

In recent years, approaches based on hidden Markov models (HMMs) have
come to dominate the area. Speech technology and the related field of
handwritten character recognition are already making the transition to
widespread industrial and consumer applications.

The Bayesian network formalism was invented to allow efficient representation
of, and rigorous reasoning with, uncertain knowledge.

The emergence of intelligent agents (1995-present)

One of the most important environments for intelligent agents is the Internet.

Sample Applications

Autonomous planning and scheduling: A hundred million miles from Earth,
NASA's Remote Agent program became the first on-board autonomous planning
program to control the scheduling of operations for a spacecraft. Remote Agent
generated plans from high-level goals specified from the ground, and it
monitored the operation of the spacecraft as the plans were executed-detecting,
diagnosing, and recovering from problems as they occurred.

Game playing: IBM's Deep Blue became the first computer program to defeat the
world champion (Garry Kasparov) in a chess match. The value of IBM's stock
increased by $18 billion.

Autonomous control: The ALVINN computer vision system was trained to steer
a car to keep it following a lane. The computer-controlled minivan used to
navigate across the United States-for 2850 miles and it was in control of steering
the vehicle 98% of the time. A human took over the other 2%, mostly at exit
ramps.

CS 2351 – Artificial Intelligence UNIT I

Page 10 of 116 CSE– Dhaanish Ahmed College of Engineering

Diagnosis: Medical diagnosis programs based on probabilistic analysis have
been able to perform at the level of an expert physician in several areas of
medicine

Logistics Planning: During the Gulf crisis of 1991, U.S. forces deployed a
Dynamic Analysis and Replanning Tool, DART to do automated logistics
planning and scheduling for transportation. This involved up to 50,000 vehicles,
cargo, and people at a time, and had to account for starting points, destinations,
routes, and conflict resolution

Robotics: Many surgeons now use robot assistants in microsurgery

Language understanding and problem solving: PROVERB is a computer
program that solves crossword puzzles better than most humans, using
constraints on possible word fillers, a large database of past puzzles, and a
variety of information sources including dictionaries and online databases such
as a list of movies and the actors that appear in them.

Typical problems to which AI methods are applied

Pattern recognition, Optical character recognition , Handwriting recognition ,
Speech recognition , Face recognition, Computer vision, Virtual reality and
Image processing , Diagnosis , Game theory and Strategic planning , Natural
language processing, Translation and Chatterboxes , Nonlinear control and
Robotics, Artificial life, Automated reasoning , Automation , Biologically
inspired computing ,Concept mining , Data mining , Knowledge
representation , Semantic Web , E-mail spam filtering, Robotics, ,Cognitive ,
Cybernetics , Hybrid intelligent system, Intelligent agent ,Intelligent control

INTELLIGENT AGENTS

Introduction - Agents and Environments

An agent is anything that can be viewed as perceiving its environment through
sensors andacting upon that environment through actuators.

Different types of agents

1. A human agent has eyes, ears, and other organs for sensors and hands, legs,
mouth, and other body parts for actuators.

http://en.wikipedia.org/wiki/Pattern_recognition�
http://en.wikipedia.org/wiki/Optical_character_recognition�
http://en.wikipedia.org/wiki/Handwriting_recognition�
http://en.wikipedia.org/wiki/Speech_recognition�
http://en.wikipedia.org/wiki/Facial_recognition_system�
http://en.wikipedia.org/wiki/Computer_vision�
http://en.wikipedia.org/wiki/Virtual_reality�
http://en.wikipedia.org/wiki/Image_processing�
http://en.wikipedia.org/wiki/Diagnosis_(artificial_intelligence)�
http://en.wikipedia.org/wiki/Game_theory�
http://en.wikipedia.org/wiki/Strategic_planning�
http://en.wikipedia.org/wiki/Natural_language_processing�
http://en.wikipedia.org/wiki/Natural_language_processing�
http://en.wikipedia.org/wiki/Natural_language_processing�
http://en.wikipedia.org/wiki/Translation�
http://en.wikipedia.org/wiki/Chatterbot�
http://en.wikipedia.org/wiki/Nonlinear_control�
http://en.wikipedia.org/wiki/Robot�
http://en.wikipedia.org/wiki/Artificial_life�
http://en.wikipedia.org/wiki/Automated_reasoning�
http://en.wikipedia.org/wiki/Automation�
http://en.wikipedia.org/wiki/Biologically_inspired_computing�
http://en.wikipedia.org/wiki/Biologically_inspired_computing�
http://en.wikipedia.org/wiki/Biologically_inspired_computing�
http://en.wikipedia.org/wiki/Concept_mining�
http://en.wikipedia.org/wiki/Data_mining�
http://en.wikipedia.org/wiki/Knowledge_representation�
http://en.wikipedia.org/wiki/Knowledge_representation�
http://en.wikipedia.org/wiki/Semantic_Web�
http://en.wikipedia.org/wiki/E-mail_spam�
http://en.wikipedia.org/wiki/Robot�
http://en.wikipedia.org/wiki/Cognitive�
http://en.wikipedia.org/wiki/Cybernetics�
http://en.wikipedia.org/wiki/Hybrid_intelligent_system�
http://en.wikipedia.org/wiki/Intelligent_agent�
http://en.wikipedia.org/wiki/Intelligent_control�

CS 2351 – Artificial Intelligence UNIT I

Page 11 of 116 CSE– Dhaanish Ahmed College of Engineering

2. A robotic agent might have cameras and infrared range finders for sensors
and various motors for actuators.

3. A software agent receives keystrokes, file contents, and network packets as
sensory inputs and acts on the environment by displaying on the screen, writing
files, and sending network packets.

4. Generic agent – A general structure of an agent who interacts with the
environment.

Fig : Agents interact with environments through sensors and effectors (accuators)

The term percept is to refer to the agent's perceptual inputs at any given instant.

PERCEPT SEQUENCE: Agent's percept sequence is the complete history of
everything the agent has ever perceived.

An agent's behavior is described by the agent function that maps any given
percept sequence to an action.

AGENT PROGRAM : The agent function for an artificial agent will be
implemented by an agent program.

Example : The vacuum-cleaner world has just two locations: squares A and B.
The vacuum agent perceives which square it is in and whether there is dirt in the
square. It can choose to move left, move right, suck up the dirt, or do nothing.
One very simple agent function is the following: if the current square is dirty,
then suck, otherwise move to the other square.

CS 2351 – Artificial Intelligence UNIT I

Page 12 of 116 CSE– Dhaanish Ahmed College of Engineering

Fig : A vacuum-cleaner world with just two locations

Partial tabulation of a simple agent function for the vacuum-cleaner world

• Percepts: location and status, e.g., [A,Dirty]
• Actions: Left, Right, Suck, NoOp

Percept
sequence

Action

[A, Clean]

Right

[A, Dirty]

Suck

[B, Clean]

Left

[B, Dirty]

Suck

The agent program for a simple agent in the two-state vacuum environment for
above tabulation

function VACUUM-AGENT([location,status])
if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

CS 2351 – Artificial Intelligence UNIT I

Page 13 of 116 CSE– Dhaanish Ahmed College of Engineering

Concept of Rationality

A rational agent is one that does the right thing. The right action is the one that
will cause the agent to be most successful.

Performance measures

A performance measure embodies the criterion for success of an agent's
behavior. When an agent is plunked down in an environment, it generates a
sequence of actions according to the percepts it receives. This sequence of actions
causes the environment to go through a sequence of states. If the sequence is
desirable, then the agent has performed well.

Rationality

Rational at any given time depends on four things:

1. The performance measure that defines the criterion of success.
2. The agent's prior knowledge of the environment.
3. The actions that the agent can perform.
4. The agent's percept sequence to date.

Definition of a rational agent:

For each possible percept sequence, a rational agent should select an action that
is expected to maximize its performance measure, given the evidence provided
by the percept sequence and whatever built-in knowledge the agent has. A
rational agent should be autonomous

Definition of an omniscient agent:

An omniscient agent knows the actual outcome of its actions and can act
accordingly; but omniscience is impossible in reality.

Autonomy

A rational agent should be autonomous-it should learn what it can to
compensate for partial or incorrect prior knowledge.

Information Gathering

Doing actions in order to modify future percepts is called as information
gathering.

CS 2351 – Artificial Intelligence UNIT I

Page 14 of 116 CSE– Dhaanish Ahmed College of Engineering

Specifying the task environment

In the discussion of the rationality of any agent, we had to specify the
performance measure, the environment, and the agent's actuators and sensors.
We group all these together under the heading of the task environment and we
call this as PEAS (Performance, Environment, Actuators, Sensors) or PAGE
(Percept, Action, Goal, Environment) description. In designing an agent, the
first step must always be to specify the task environment.

Example : PEAS description of the task environment for agents

Agent Type Performance

Measure

Environment Actuators Sensors

Automated
Taxi Driver

Safe, fast, legal,
comfortable
trip,
maximize
profits

Roads,
traffic,
pedestrian
customers

Steering
accelerator,
brake,
signal,
horn,
display

Cameras, sonar,
speedometer,
GPS, odometer,
accelerometer
engine sensors,
keyboard

Medical
diagnosis
system

Healthy patient,
minimize costs,
lawsuits

Patient,
hospital, staff

Screen
display
(question
tests,
diagnoses
treatment
referrals)

Keyboard (entry
of symptoms,
findings, patient's
answers)

Part-Picking
Robot

Percentage of
parts in correct
bin

Conveyor belt
with parts,
bins

Jointed arm
and hand

Camera, joint
angle sensors

Interactive
English tutor

Maximize
student’s score
on test

Set of students Screen
display
(exercises)

Keyboard

robot soccer
player

amount of goals
scored

soccer match
field

legs cameras, sonar or
infrared

Satellite
Image
Analysis

Correct Image
Categorization

Downlink
from satellite

Display
categorizati
on of scene

Color pixel arrays

Refinery
controller

Maximum
purity, safety

Refinery
operators

Valves,
pumps,
heaters,

Temperature,
pressure, chemical
sensors

CS 2351 – Artificial Intelligence UNIT I

Page 15 of 116 CSE– Dhaanish Ahmed College of Engineering

displays
Vacuum
Agent

minimize
energy
consumption,
maximize dirt
pick up

two squares Left, Right,
Suck, NoOp

Sensors to identify
the dirt

Properties of task environments (Environment Types)

Fully observable vs. partially observable

If an agent's sensors give it access to the complete state of the environment at
each point in time, then we say that the task environment is fully observable. A
chess playing system is an example of a system that operates in a fully
observable environment.

An environment might be partially observable because of noisy and inaccurate
sensors or because parts of the state are simply missing from the sensor data. A
bridge playing program is an example of a system operating in a partially
observable environment.

Deterministic vs. stochastic

If the next state of the environment is completely determined by the current state
and the action executed by the agent, then we say the environment is
deterministic; otherwise, it is stochastic

Image analysis systems are examples of deterministic. The processed image is
determined completely by the current image and the processing operations.

Taxi driving is clearly stochastic in this sense, because one can never predict the
behavior of traffic exactly;

Episodic vs. sequential

An episodic environment means that subsequent episodes do not depend on
what actions occurred in previous episodes.

In a sequential environment, the agent engages in a series of connected episodes.
In sequential environments, on the other hand, the current decision could affect
all future decisions. Chess and taxi driving are sequential

CS 2351 – Artificial Intelligence UNIT I

Page 16 of 116 CSE– Dhaanish Ahmed College of Engineering

Static vs. dynamic

If the environment can change while an agent is deliberating, then we say the
environment is dynamic for that agent; otherwise, it is static. Taxi driving is
clearly dynamic. Crossword puzzles are static.

Discrete vs. continuous

If the number of distinct percepts and actions is limited, the environment is
discrete, otherwise it is continuous. Taxi driving is a continuous state and
continuous-time problem. Chess game has a finite number of distinct states.

Single agent vs. Multi agent

The distinction between single-agent and multi agent environments may seem
simple enough. For example, an agent solving a crossword puzzle by itself is
clearly in a single-agent environment, whereas an agent playing chess is in a
two-agent environment.

Chess is a competitive multi agent environment. Taxi-driving environment is a
partially cooperative multi agent environment.

Environment Characteristics

Examples of task environments and their characteristics

Task
Environment

Observable Deterministic Episodic Static Discrete Agent

Crossword
puzzle

Fully Deterministic Sequential Static Discrete Single

Chess with a
clock

Fully Stochastic Sequential Semi Discrete Multi

Poker

Partially Stochastic Sequential Static Discrete Multi

Backgammon

Fully Stochastic Sequential Static Discrete Multi

Taxi dnving

Partially Stochastic Sequential Dynamic Continuous Multi

Medical
diagnosis

Partially Stochastic Sequential Dynamic Continuous Single

Image-
analysis

Fully Deterministic Episodic Semi Continuous Single

Part-picking Partially Stochastic Episodic Dynamic Continuous Single

CS 2351 – Artificial Intelligence UNIT I

Page 17 of 116 CSE– Dhaanish Ahmed College of Engineering

robot

Refinery
controller

Partially Stochastic Sequential Dynamic Continuous Single

Interactive
English tutor

Partially Stochastic Sequential Dynamic Discrete Multi

• The simplest environment is

– Fully observable, deterministic, episodic, static, discrete and single-
agent.

• Most real situations are:
– Partially observable, stochastic, sequential, dynamic, continuous

and multi-agent.

Structure of the Agents

The job of AI is to design the agent program that implements the agent function
mapping percepts to actions.

Agent programs

Agent programs take the current percept as input from the sensors and return an
action to the actuators

The agent program takes the current percept as input, and the agent function
takes the entire percept history

Architecture is a computing device used to run the agent program.

The agent programs will use some internal data structures that will be updated
as new percepts arrive. The data structures are operated by the agents decision
making procedures to generated an action choice, which is then passed to the
architecture to be executed. Two types of agent programs are

1. A Skeleton Agent
2. A Table Lookup Agent

Skeleton Agent

The agent program receives only a single percept as its input.

Intelligent agent = Architecture + Agent program

CS 2351 – Artificial Intelligence UNIT I

Page 18 of 116 CSE– Dhaanish Ahmed College of Engineering

If the percept is a new input then the agent updates the memory with the new
percept

Table-lookup agent

A table which consists of indexed percept sequences with its corresponding
action

The input percept checks the table for the same

Drawbacks of table lookup agent

• Huge table
• Take a long time to build the table
• No autonomy
• Even with learning, need a long time to learn the table entries

Four basic types in order of increasing generality

• Simple reflex agents
• Model-based reflex agents
• Goal-based agents
• Utility-based agents

function TABLE-DRIVEN-AGENT(percept) returns an action

 static: percepts, a sequence initially empty

table, a table of actions, indexed by percept
sequence

append percept to the end of percepts
action ← LOOKUP(percepts, table)
return action

function SKELETON-AGENT(percept) returns action
static: memory, the agent’s memory of the world
memory <- UPDATE-MEMORY(memory, percept)
action <- CHOOSE-BEST-ACTION(memory)
memory <- UPDATE-MEMORY(memory, action)
return action

CS 2351 – Artificial Intelligence UNIT I

Page 19 of 116 CSE– Dhaanish Ahmed College of Engineering

Simple reflex agents

The simplest kind of agent is the simple reflex agent. These agents select actions
on the basis of the current percept, ignoring the rest of the percept history.

This agent describes about how the condition – action rules allow the agent to
make the connection from percept to action

It acts according to a rule whose condition matches the current state, as defined
by the percept.

Condition – action rule : if condition then action

Example : condition-action rule: if car-in-front-is-braking then initiate-braking

Fig : Schematic diagram of a simple reflex agent.

Rectangles - to denote the current internal state of the agent's decision process
Ovals - to represent the background information used in the process.

function SIMPLE-REFLEX-AGENT(percept) returns action
static : rules, a set of condition-action rules
state < - I N T E R P R E T - I N P U T (percept)
rule <- R U L E - M A T C H (state, rules),
action <- R U L E - A C T I O N [rule]
return action

CS 2351 – Artificial Intelligence UNIT I

Page 20 of 116 CSE– Dhaanish Ahmed College of Engineering

• INTERPRET-INPUT function generates an abstracted description of the
current state from the percept

• RULE-MATCH function returns the first rule in the set of rules that
matches the given state description

• RULE - ACTION – the selected rule is executed as action of the given
percept

Example : Medical Diagnosis System
If the patient has reddish brown spots then start the treatment for measles.

Model based Reflex Agents

An agent which combines the current percept with the old internal state to
generate updated description of the current state.

function REFLEX-AGENT-WITH-STATE(percept)returns action
static: state, a description of the current world state

 rules, a set of condition-action rules
 action, the most recent action, initially none

state <- UPDATE-STATE(state, action, percept)
rule <- RULE - MATCH (state, rules)
action <- RULE-ACTION [rule]
return action

CS 2351 – Artificial Intelligence UNIT I

Page 21 of 116 CSE– Dhaanish Ahmed College of Engineering

UPDATE-STATE - is responsible for creating the new internal state description

Example: Medical Diagnosis system

If the Patient has spots then check the internal state (i. e) any change in the
environment may lead to cause spots on the patient. From this internal state the
current state is updated and the corresponding action is executed.
Goal based Agents

An Agent knows the description of current state as well as goal state. The action
matches with the current state is selected depends on the goal state.

Example : Medical diagnosis system

If the name of disease is identified for the patient then the treatment is given to
the patient to recover from him from the disease and make the patient healthy is
the goal to be achieved

Utility base agents

An agent which generates a goal state with high – quality behavior (i.e) if more
than one sequence exists to reach the goal state then the sequence with more
reliable, safer, quicker and cheaper than others to be selected.

Utility is a function that maps a state onto a real number, which describes the
associated degree of happiness

CS 2351 – Artificial Intelligence UNIT I

Page 22 of 116 CSE– Dhaanish Ahmed College of Engineering

The utility function can be used for two different cases :

1. When there are conflicting goals, only some of which can be achieved (for
example, speed and safety)

2. When there are several goals that the agent can aim for, none of which can

be achieved with certainty, utility provides a way in which the likelihood
of success can be weighed up against the importance of the goal

Example : Medical diagnosis System

If the patient disease is identified then the sequence of treatment which leads to
recover the patient with all utility measure is selected and applied

Learning agent

All agents can improve their performance through Learning

The learning task allows the agent to operate in unknown environments initially
and then become more competent than its initial knowledge.

A learning agent can be divided into four conceptual components:

1. Learning element
2. performance element

CS 2351 – Artificial Intelligence UNIT I

Page 23 of 116 CSE– Dhaanish Ahmed College of Engineering

3. Critic
4. Problem generator

The learning element uses feedback from the critic on how the agent is doing
and determines how the performance element should be modified to do better in
the future. Learning element is also responsible for making improvements

Performance element is to select external action and it is equivalent to agent

The critic tells the learning element how well the agent is doing with respect to a
fixed performance standard

The last component of the learning agent is the problem generator. It is
responsible for suggesting actions that will lead to new and informative
experiences.

Problem solving – Introduction

Search is one of the operational tasks that characterize AI programs best. Almost
every AI program depends on a search procedure to perform its prescribed

CS 2351 – Artificial Intelligence UNIT I

Page 24 of 116 CSE– Dhaanish Ahmed College of Engineering

functions. Problems are typically defined in terms of state, and solution
corresponds to goal states.

Problem solving using search technique performs two sequence of steps:

(i) Define the problem - Given problem is identified with its required

initial and goal state.
(ii) Analyze the problem - The best search technique for the given:

problem is chosen from different an AI search technique which derives
one or more goal state in minimum number of states.

Types of problem

In general the problem can be classified under anyone of the following four types
which depends on two important properties. They are

(i) Amount of knowledge, of the agent on the state and action description.
(ii) How the agent is connected to its environment through its percepts and
actions?

The four different types of problems are:

(i) Single state problem
(ii) Multiple state problem
(iii) Contingency problem
(iv) Exploration problem

Problem solving Agents

Problem solving agent is one kind of goal based agent, where the agent decides
what to do by finding sequence of actions that lead to desirable states. The
complexity arises here is the knowledge about the formulation process, (from
current state to outcome action) of the agent.

If the agent understood the definition of problem, it is relatively straight forward
to construct a search process for finding solutions, which implies that problem
solving agent should be an intelligent agent to maximize the performance
measure.

The sequence of steps done by the intelligent agent to maximize the performance
measure:

CS 2351 – Artificial Intelligence UNIT I

Page 25 of 116 CSE– Dhaanish Ahmed College of Engineering

i) Goal formulation - based on current situation is the first step in problem
solving. Actions that result to a failure case can be rejected without further
consideration.
(ii)Problem formulation - is the process of deciding what actions and states to
consider and follows goal formulation.
(iii) Search - is the process of finding different possible sequence of actions that
lead to state of known value, and choosing the best one from the states.
(iv) Solution - a search algorithm takes a problem as input and returns a solution
in the form of action sequence.
(v) Execution phase - if the solution exists, the action it recommends can be
carried out.

A simple problem solving agent

Note :

RECOMMENDATION - first action in the sequence
REMAINDER - returns the rest
SEARCH - choosing the best one from the sequence of actions
FORMULATE-PROBLEM - sequence of actions and states that lead to goal state.
UPDATE-STATE - initial state is forced to next state to reach the goal state

function SIMPLE-PROBLEM-SOLVING-AGENT(p) returns an
action
input : p, a percept
static: s, an action sequence, initially empty
state, some description of the current world state
g, a goal initially null
problem, a problem formulation
state <- UPDATE-STATE(state, p)
if s is empty then
g <- FORMULATE-GOAL(state)
problem <-FORMULATE-PROBLEM(state,g)
s <- SEARCH(problem)
action <- RECOMMENDATION(s, state)
s <- REMAINDER(s, state)
return action

CS 2351 – Artificial Intelligence UNIT I

Page 26 of 116 CSE– Dhaanish Ahmed College of Engineering

Well-defined problems and solutions

A problem can be defined formally by four components:

1. initial state
2. successor function
3. goal test
4. path cost

The initial state that the agent starts in.

Successor function (S) - Given a particular state x, S(x) returns a set of states
reachable from x by any single action.

The goal test, which determines whether a given state is a goal state. Sometimes
there is an explicit set of possible goal states, and the test simply checks whether
the given state is one of them.

A path cost function that assigns a numeric cost to each path. The problem-
solving agent chooses a cost function that reflects its own performance measure.

A solution to a problem is a path from the initial state to a goal state

Operator - The set of possible actions available to the agent.

State space (or) state set space - The set of all possible states reachable from the
initial state by any sequence of actions.

Path (state space) - The sequence of action leading from one state to another

The effectiveness of a search can be measured using three factors. They are:

1 Solution is identified or not?
2. Is it a good solution? If yes, then path cost to be minimum.
3. Search cost of the problem that is associated with time and memory required
to find a solution.

For Example

Imagine an agent in the city of Arad, Romania, enjoying a touring holiday. Now,
suppose the agent has a nonrefundable ticket to fly out of Bucharest the
following day. In that case, it makes sense for the agent to adopt the goal of
getting to Bucharest. The agent's task is to find out which sequence of actions
will get it to a goal state.

CS 2351 – Artificial Intelligence UNIT I

Page 27 of 116 CSE– Dhaanish Ahmed College of Engineering

This process of looking for such a sequence is called search.

A search algorithm takes a problem as input and returns a solution in the form of
an action sequence. Once a solution is found, the actions it recommends can be
carried out. This is called the execution phase.

Formulating problems

Initial state : the initial state for our agent in Romania might be described as
In(Arad)

Successor function : Given a particular state x, SUCCESSOR-FN(x) returns a set
of (action, successor) ordered pairs, where each action is one of the legal actions
in state x and each successor is a state that can be reached from x by applying the
action. For example, from the state In(Arad), the successor function for the
Romania problem would return
{(Go(Sibzu),In(Sibiu)), (Go(Timisoara), In(Tzmisoara)), (Go(Zerznd),In(Zerind)))

Goal test : The agent's goal in Romania is the singleton set {In(Bucharest)).

Path cost : The step cost of taking action a to go from state x to state y is denoted
by c(x, a, y).

Example Problems

CS 2351 – Artificial Intelligence UNIT I

Page 28 of 116 CSE– Dhaanish Ahmed College of Engineering

The problem-solving approach has been applied to a vast array of task
environments.
A toy problem is intended to illustrate or exercise various problem-solving
methods. It can be given a concise, exact description. It can be used easily by
different researchers to compare the performance of algorithms
A real-world problem is one whose solutions people actually care about.
Some list of best known toy and real-world problems

Toy Problems

i) Vacuum world Problem

States: The agent is in one of two locations, each of which might or might not
contain dirt. Thus there are 2 * 22 = 8 possible world states.
Initial state: Any state can be designated as the initial state.
Successor function: three actions (Left, Right, and Suck).
Goal test: This checks whether all the squares are clean.
Path cost: Each step costs 1, so the path cost is the number of steps in the path.

Fig : The complete state space for Vacuum World

ii) 8-puzzle Problem

The 8-puzzle problem consists of a 3 x 3 board with eight numbered tiles and a
blank space. A tile adjacent to the blank space can slide into the space. The object
is to reach a specified goal state

CS 2351 – Artificial Intelligence UNIT I

Page 29 of 116 CSE– Dhaanish Ahmed College of Engineering

States: A state description specifies the location of each of the eight tiles and the
blank in one of the nine squares.
Initial state: Any state can be designated as the initial state.
Successor function: This generates the legal states that result from trying the
four actions (blank moves Left, Right, Up, or Down).
Goal test: This checks whether the state matches the goal configuration (Other
goal configurations are possible.)
Path cost: Each step costs 1, so the path cost is the number of steps in the path.

Initial State Goal State

iii) 8-queens problem

The goal of the 8-queens problem is to place eight queens on a chessboard such
that no queen attacks any other. (A queen attacks any piece in the same row,
column or diagonal.

States: Any arrangement of 0 to 8 queens on the board is a state.
Initial state: No queens on the board.
Successor function: Add a queen to any empty square.
Goal test: 8 queens are on the board, none attacked.
Path cost : Zero (search cost only exists)

solution to the 8-queens problem.

CS 2351 – Artificial Intelligence UNIT I

Page 30 of 116 CSE– Dhaanish Ahmed College of Engineering

iv) Crypt arithmetic Problem

In crypt arithmetic problems letters stand for digits and the aim is to find a
substitution of digits for letters such that the resulting sum is arithmetically
correct, each letter stand for a different digit

Rules

There should be no more than 10 distinct characters
The summation should be the longest word
The summation can not be too long
There must be a one-to-one mapping between letters and digits
The leftmost letter can't be zero in any word.

States: A crypt arithmetic puzzle with some letters replaced by digits
Initial state: No digits is assigned to the letters
Successor function: Replace all occurrences of a letter with a digit not already
appearing in the puzzle
Goal test: Puzzle contains only digits and represents a correct sum
Path cost : Zero

Example 1:

 S E N D
 + M O R E

 M O N E Y

Solution : S=9 , E = 5, N = 6, D=7, M= 1, O= 0, R = 8, Y=2

Example 2:

 FORTY
 +TEN
 +TEN

 SIXTY

Solution : F=2, O=9, R=7, T=8 , Y=6, E=5, N=0

CS 2351 – Artificial Intelligence UNIT I

Page 31 of 116 CSE– Dhaanish Ahmed College of Engineering

v) Missionaries and cannibals problem
Three missionaries and three cannibals are on one side of a river, along with a oat
that can hold one or two people. Find a way to get everyone to the other side,
without ever leaving a group of missionaries in one place out numbers by the
cannibals in that place
Assumptions :

1. Number of trips is not restricted
2. Both the missionary and cannibal can row the boat

States: A state consists of an ordered sequence of two numbers representing the
number of missionaries and cannibals
Example : (i,j) = (3,3) three missionaries and three cannibals

Initial state: (i,j) = (3,3) in one side of the river
Successor function: The possible move across the river are:

1. One Missionary and One Cannibal
2. Two Missionaries
3. Two Cannibals
4. One Missionary
5. One Cannibal

Rule No. Explanation
(i) (i, j) : One missionary and one cannibal

can cross the river only when ((i-1) >=
(j-1)) in one side of the river and ((i+1)
>= (j+ 1)) in the other side of the river.

(ii)

(i,j) : Two missionaries can cross the
river only when ((i-2)>=j) in one side
of the
river and ((i+2)>=j) in the other side of
the river.

(iii) (i,j) : Two cannibals can cross the river
only when ((j-2)<= i) in one side of the
river and ((j+2)<= i) in the other side of
the river.

(iv) (i,j) : One missionary can cross the river
only when ((i-1)>=j)) in one side of the
river and ((i-1)>=j)) in the other side of
the river.

(v) (i,j) : One cannibal can cross the river
only when (((j-l)<=i) in one side of the
river
and (((j+l)<=i)in the other side of the
river.

CS 2351 – Artificial Intelligence UNIT I

Page 32 of 116 CSE– Dhaanish Ahmed College of Engineering

Initial state : (i.j) = (3,3) in one side of the river.

Goal test: (i,j) = (3,3) in the other side of the river.

Path cost : Number of crossings between the two sides of the river.

Solution:

Bank1 Boat Bank2 Rule

Applied
(i,j)=(3,3) (i,j)=(0,0)

(3,1) -> (0,2) -> (0,2) (iii)
(3,2) <- (0,1) <- (0,1) (v)
(3,0) -> (0,2) -> (0,3) (iii)
(3,1) <- (0,1) <- (0,2) (v)
(1,1) -> (2,0) -> (2,2) (ii)
(2,2) <- (1,1) <- (1,1) (i)
(0,2) -> (2,0) -> (3,1) (ii)
(0,3) <- (0,1) <- (3,0) (v)
(0,1) -> (0,2) -> (3,2) (iii)
(0,2) <- (0,1) <- (3,1) (v)
(0,0) -> (0,2) -> (3,3) (iii)

Real-world problems

Airline travel problem

States: Each is represented by a location (e.g., an airport) and the current time.
Initial state: This is specified by the problem.
Successor function: This returns the states resulting from taking any scheduled
flight (perhaps further specified by seat class and location), leaving later than the
current time plus the within-airport transit time, from the current airport to
another.
Goal test: Are we at the destination by some pre specified time?
Path cost: This depends on monetary cost, waiting time, flight time, customs and
immigration procedures, seat quality, time of day, type of airplane, frequent-
flyer mileage awards, and so on.

Route-finding problem is defined in terms of specified locations and transitions
along links between them. Route-finding algorithms are used in a variety of
applications, such as routing in computer networks, military operations
planning, and airline travel planning systems

CS 2351 – Artificial Intelligence UNIT I

Page 33 of 116 CSE– Dhaanish Ahmed College of Engineering

The traveling salesperson problem (TSP) is a touring problem in which each city
must be visited exactly once. The aim is to find the shortest tour.

A VLSI layout problem requires positioning millions of components and
connections on a chip to minimize area, minimize circuit delays, minimize stray
capacitances, and maximize manufacturing yield. The layout problem comes
after the logical design phase, and is usually split into two parts: cell layout and
channel routing. In cell layout, the primitive components of the circuit are
grouped into cells, each of which performs some recognized function. Each cell
has a fixed footprint (size and shape) and requires a certain number of
connections to each of the other cells. The aim is to place the cells on the chip so
that they do not overlap and so that there is room for the connecting wires to be
placed between the cells. Channel routing finds a specific route for each wire
through the gaps between the cells.

Robot navigation is a generalization of the route-finding problem described
earlier. Rather than a discrete set of routes, a robot can move in a continuous
space with (in principle) an infinite set of possible actions and states. For a
circular robot moving on a flat surface, the space is essentially two-dimensional.
When the robot has arms and legs or wheels that must also be controlled, the
search space becomes many-dimensional. Advanced techniques are required just
to make the search space finite. In addition to the complexity of the problem,
real robots must also deal with errors in their sensor readings and motor
controls.

Automatic assembly sequencing of complex objects by a robot was first
demonstrated by FREDDY (Michie, 1972). In assembly problems, the aim is to
find an order in which to assemble the parts of some object. If the wrong order is
chosen, there will be no way to add some part later in the sequence without
undoing some of the work already done. Checking a step in the sequence for
feasibility is a difficult geometrical search problem closely related to robot
navigation

Searching for Solutions

Search techniques use an explicit search tree that is generated by the initial state
and the successor function that together define the state space. In general, we
may have a search graph rather than a search tree, when the same state can be
reached from multiple paths

CS 2351 – Artificial Intelligence UNIT I

Page 34 of 116 CSE– Dhaanish Ahmed College of Engineering

Example Route finding problem

The root of the search tree is a search node corresponding to the initial state,
In(Arad).

The first step is to test whether this is a goal state.

Apply the successor function to the current state, and generate a new set of
states

In this case, we get three new states: In(Sibiu),In(Timisoara), and In(Zerind). Now
we must choose which of these three possibilities to consider further.

Continue choosing, testing, and expanding until either a solution is found or
there are no more states to be expanded.

The choice of which state to expand is determined by the search strategy

Tree Search algorithm

Task : Find a path to reach F from A

CS 2351 – Artificial Intelligence UNIT I

Page 35 of 116 CSE– Dhaanish Ahmed College of Engineering

1. Start the sequence with the initial state and check whether it is a goal state or
not.

a, If it is a goal state return success.
b. Otherwise perform the following sequence of steps

From the initial state (current state) generate and expand the new set of states.
The collection of nodes that have been generated but not expanded is called as
fringe. Each element of the fringe is a leaf node, a node with no successors in the
tree.

Expanding A

Expanding B

Expanding C

Sequence of steps to reach the goal state F from (A = A - C - F)
2. Search strategy: In the above example we did the sequence of choosing, testing
and expanding until a solution is found or until there are no more states to be
expanded. The choice of which state to expand first is determined by search
strategy.
3. Search tree: The tree which is constructed for the search process over the state
space.
4. Search node: The root of the search tree that is the initial state of the problem.

The general tree search algorithm

CS 2351 – Artificial Intelligence UNIT I

Page 36 of 116 CSE– Dhaanish Ahmed College of Engineering

There are many ways to represent nodes, but we will assume that a node is a
data structure with five components:

STATE: the state in the state space to which the node corresponds
PARENT-NODE: the node in the search tree that generated this node;
ACTION (RULE): the action that was applied to the parent to generate the node;
PATH-COST: the cost, traditionally denoted by g(n) , of the path from the initial
state to the node
DEPTH: the number of steps along the path from the initial state.

The collection of nodes represented in the search tree is defined using set or
queue representation.

Set : The search strategy would be a function that selects the next node to be
expanded from the set

Queue: Collection of nodes are represented, using queue. The queue operations
are defined as:

MAKE-QUEUE(elements) - creates a queue with the given elements
EMPTY(queue)-returns true only if there are no more elements in the queue.
REM0VE-FIRST(queue) - removes the element at the front of the queue and
returns it
INSERT ALL (elements, queue) - inserts set of elements into the queue and
returns the resulting queue.
FIRST (queue) - returns the first element of the queue.
INSERT (element, queue) - inserts an element into the queue and returns the
resulting queue

function TREE-SEARCH(problem. strategy) returns a
solution or failure
initialize the search tree using the initial state of
problem
loop do
if there are no candidates for expansion then return
failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the
corresponding solution
else expand the node and add the resulting nodes to the
search tree

CS 2351 – Artificial Intelligence UNIT I

Page 37 of 116 CSE– Dhaanish Ahmed College of Engineering

The general tree search algorithm with queue representation

Example: Route finding problem

Task. : Find a path to reach E using Queuing function in general tree search
algorithm

function TREE-SEARCH(problem,fringe) returns a
solution, or failure
fringe <- INSERT(MAKE-NODE(INITIAL-STATE[problem]),
fringe)
loop do
if EMPTY?(fringe) then return failure
node <- REMOVE-FIRST(fringe)
ifGOAL-TEST[problenl]applied to STATE[node] succeeds
then return SOLUTION(node)
fringe <- INSERT-ALL(EXPAND(node, problem),fringe)

function EXPAND(node, problem) returns a set of nodes
successors <- the empty set
for each <action, result> in SUCCESSOR-FN
[problem](STATE[node])do
S <- a new NODE
STATE[s] <- result
PARENT-NODE[s] <- node
ACTION[s] <- action
PATH-COST[s] <- PATH-COST[node]+STEP-COST(node,action,s)
DEPTH[s] <- DEPTH[node] + 1
add s to successors
return successors

CS 2351 – Artificial Intelligence UNIT I

Page 38 of 116 CSE– Dhaanish Ahmed College of Engineering

Measuring problem solving performance

The search strategy algorithms are evaluated depends on four important
criteria’s. They are:

(i) Completeness : The strategy guaranteed to find a solution when there is one.
(ii) Time complexity : Time taken to run a solution
(iii) Space complexity : Memory needed to perform the search.
(iv) Optimality : If more than one way exists to derive the solution then the best
one is Selected

Definition of branching factor (b): The number of nodes which is connected to
each of the node in the search tree. Branching factor is used to find space and
time complexity of the search strategy

Solving Problems by Searching

The searching algorithms are divided into two categories

1. Uninformed Search Algorithms (Blind Search)

CS 2351 – Artificial Intelligence UNIT I

Page 39 of 116 CSE– Dhaanish Ahmed College of Engineering

2. Informed Search Algorithms (Heuristic Search)

There are six Uninformed Search Algorithms

1. Breadth First Search
2. Uniform-cost search
3. Depth-first search
4. Depth-limited search
5. Iterative deepening depth-first search
6. Bidirectional Search

There are three Informed Search Algorithms

1. Best First Search
2. Greedy Search
3. A* Search

Blind search Vs Heuristic search

Blind search Heuristic search

No information about the number of
steps (or) path cost from current state
to goal state

The path cost from the current state to
the goal state is calculated, to select the
minimum path cost as the next state.

Less effective in search method More effective in search method
Problem to be solved with the given
information

Additional information can be added
as assumption to solve the problem

Breadth-first search

Breadth-first search is a simple strategy in which the root node is expanded first,
then all the successors of the root node are expanded next, then their successors,
and so on. In general, all the nodes are expanded at a given depth in the search
tree before any nodes at the next level are expanded.

Breadth-first search can be implemented by calling TREE-SEARCH with an
empty fringe that is a first-in-first-out (FIFO) queue, assuring that the nodes that
are visited first will be expanded first.

In other words, calling TREE-SEARCH(Problem, FIFO-QUEUE())results in a
breadth-first search. The FIFO queue puts all newly generated successors at the
end of the queue, which means that shallow nodes are expanded before deeper
nodes

CS 2351 – Artificial Intelligence UNIT I

Page 40 of 116 CSE– Dhaanish Ahmed College of Engineering

Breadth first search trees after node expansions

Example: Route finding problem

 Task: Find a ,path from. S to G using BFS

CS 2351 – Artificial Intelligence UNIT I

Page 41 of 116 CSE– Dhaanish Ahmed College of Engineering

The path in the 2nd depth level is selected, (i.e) SBG{or) SCG.

Algorithm :

Time and space complexity:

Example:

Time complexity

= 1 +b + b 2 + + b d

= O(b d)

function BFS{problem) returns a solution or failure
return TREE-SEARCH (problem, FIFO-QUEUE())

CS 2351 – Artificial Intelligence UNIT I

Page 42 of 116 CSE– Dhaanish Ahmed College of Engineering

The space complexity is same as time complexity because all the leaf nodes of
the tree must be maintained in memory at the same time = O(b d)

Completeness: Yes

Optimality: Yes, provided the path cost is a non decreasing function of the depth
of the node

Advantage: Guaranteed to find the single solution at the shallowest depth level

Disadvantage: Suitable for only smallest instances problem (i.e.) (number of
levels to be minimum (or) branching factor to be minimum)
')

Uniform-cost search

Breadth-first search is optimal when all step costs are equal, because it always
expands the shallowest unexpanded node. By a simple extension, we can find an
algorithm that is optimal with any step cost function. Instead of expanding the
shallowest node, uniform-cost search expands the node n with the lowest path
cost. Note that if all step costs are equal, this is identical to breadth-first search.

Uniform-cost search does not care about the number of steps a path has, but only
about their total cost.

Example: Route finding problem

Task : Find a minimum path cost from S to G

CS 2351 – Artificial Intelligence UNIT I

Page 43 of 116 CSE– Dhaanish Ahmed College of Engineering

Since the value of A is less it is expanded first, but it is not optimal.

B to be expanded next

SBG is the path with minimum path cost.

No need to expand the next path SC, because its path cost is high to reach C from
S, as well as goal state is reached in the previous path with minimum cost.

Time and space complexity:

Time complexity is same as breadth first search because instead of depth level
the minimum path cost is considered.

Time complexity: O(b d) Space complexity: O(b d)

Completeness: Yes Optimality: Yes

Advantage: Guaranteed to find the single solution at minimum path cost.

Disadvantage: Suitable for only smallest instances problem.

Depth-first search

CS 2351 – Artificial Intelligence UNIT I

Page 44 of 116 CSE– Dhaanish Ahmed College of Engineering

Depth-first search always expands the deepest node in the current fringe of the
search tree

The search proceeds immediately to the deepest level of the search tree, where
the nodes have no successors. As those nodes are expanded, they are dropped
from the fringe, so then the search "backs up" to the next shallowest node that
still has unexplored successors. This strategy can be implemented by TREE-
SEARCH with a last-in-first-out (LIFO) queue, also known as a stack.

Depth first search tree with 3 level expansion

Example: Route finding problem

Task: Find a path from S to G using DFS

CS 2351 – Artificial Intelligence UNIT I

Page 45 of 116 CSE– Dhaanish Ahmed College of Engineering

The path in the 3rd depth level is selected. (i.e. S-A-D-G

Algorithm:

Time and space complexity:

In the worst case depth first search has to expand all the nodes

Time complexity : O(bm).

The nodes are expanded towards one particular direction requires memory for
only that nodes.

Space complexity : O(bm)

function DFS(problem) return a solution or failure
TREE-SEARCH(problem, LIFO-QUEUE())

CS 2351 – Artificial Intelligence UNIT I

Page 46 of 116 CSE– Dhaanish Ahmed College of Engineering

b=2
m = 2 :. bm=4

Completeness: No

Optimality: No

Advantage: If more than one solution exists (or) number of levels is high then
DFS is best because exploration is done only in a small portion of the whole
space.

Disadvantage: Not guaranteed to find a solution

Depth - limited search

1. Definition: A cut off (maximum level of the depth) is introduced in this search
technique to overcome the disadvantage of depth first search. The cutoff value
depends on the number of states.

Example: Route finding problem

The number of states in the given map is 5. So, it is possible to get the goal state
at a maximum depth of 4. Therefore the cutoff value is 4

Task : Find a path from A to E.

CS 2351 – Artificial Intelligence UNIT I

Page 47 of 116 CSE– Dhaanish Ahmed College of Engineering

A recursive implementation of depth-limited search

Time and space complexity:

The worst case time complexity is equivalent to BFS and worst case DFS.
Time complexity : O(bl)

The nodes which is expanded in one particular direction above to be stored.

function RECURSIVE-DLS(node, problem, limit) returns a
solution, or failure/cutoff
cutoff-occurred? <- false
if GOAL-TEST[problem](STATE[node]) then return
SOLUTION(node)
else if DEPTH[node] =limit then return cutoff
else for each successor in EXPAND(node, problem) do
result <- RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred?<- true
else if result ≠ failure then return result
if cutoff-occurred? then return cutoff else return
failure

function DEPTH-LIMITED-SEARCH(problem, limit) returns a
solution, or failure/cutoff
return RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE [problem]),
problem, limit)

CS 2351 – Artificial Intelligence UNIT I

Page 48 of 116 CSE– Dhaanish Ahmed College of Engineering

Space complexity : O(bl)

Optimality: No, because not guaranteed to find the shortest solution first in the
search technique.

Completeness : Yes, guaranteed to find the solution if it exists.

Advantage: Cut off level is introduced in the DFS technique

Disadvantage : Not guaranteed to find the optimal solution.
Iterative deepening search

Iterative deepening search

Definition: Iterative deepening search is a strategy that sidesteps the issue of
choosing the best depth limit by trying all possible depth limits.

Example: Route finding problem

Task: Find a path from A to G

Limit = 0

Limit = 1

CS 2351 – Artificial Intelligence UNIT I

Page 49 of 116 CSE– Dhaanish Ahmed College of Engineering

Limit = 2

Solution: The goal state G can be reached from A in four ways. They are:

1. A – B – D - E – G ------- Limit 4
2. A - B - D - E - G ------- Limit 4
3. A - C - E - G ------- Limit 3
4. A - F - G ------ Limit2

Since it is a iterative deepening search it selects lowest depth limit (i.e.) A-F-G is
selected as the solution path.

The iterative deepening search algorithm :

Time and space complexity :

Iterative deepening combines the advantage of breadth first search and depth
first search (i.e) expansion of states is done as BFS and memory requirement is
equivalent to DFS.

Time complexity : O(bd)

Space Complexity : O(bd)

Optimality: Yes, because the order of expansion of states is similar to breadth
first search.

Completeness: yes, guaranteed to find the solution if it exists.

function ITERATIVE-DEEPENING-SEARCH (problem) returns a
solution, or failure
inputs : problem
for depth <- 0 to ∞ do
result <-DEPTH-LIMITED-SEARCH(problem, depth)
if result ≠ cutoff then return result

CS 2351 – Artificial Intelligence UNIT I

Page 50 of 116 CSE– Dhaanish Ahmed College of Engineering

Advantage: This method is preferred for large state space and the depth of the
search is not known.

Disadvantage : Many states are expanded multiple times
Example : The state D is expanded twice in limit 2

Bidirectional search

Definition : Bidirectional search is a strategy that simultaneously search both the
directions (i.e.) forward from the initial state and backward from the goal, and
stops when the two searches meet in the middle.

Example: Route finding problem

Task : Find a path from A to E.

Search from forward (A) :

Search from backward (E) :

Time and space complexity:

The forward and backward searches done at the same time will lead to the
solution in O(2bd/2) = O(bd/2)step, because search is done to go only halfway If the
two searches meet at all, the nodes of at least one of them must all be retained in
memory requires O(bd/2) space.

CS 2351 – Artificial Intelligence UNIT I

Page 51 of 116 CSE– Dhaanish Ahmed College of Engineering

Optimality: Yes, because the order of expansion of states is done in both the
directions.

Completeness: Yes, guaranteed to find the solution if it exists.

Advantage : Time and space complexity is reduced.

Disadvantage: If two searches (forward, backward) does not meet at all,
complexity arises in the search technique. In backward search calculating
predecessor is difficult task. If more than one goal state 'exists then explicit,
multiple state search is required

Comparing uninformed search strategies

Criterion Breadth

First
Uniform
Cost

Depth
First

Depth
Limited

Iterative
Deepening

Bi
direction

Complete Yes Yes No No Yes Yes
Time O(bd O(b) d O(bm)) O(bl O(b) d O(b) d/2)
Space O(bd O(b) d O(bm)) O(bl) O(bd) O(bd/2)
Optimal Yes Yes No No Yes Yes

Avoiding Repeated States

The most important complication of search strategy is expanding states that have
already been encountered and expanded before on some other path

A state space and its exponentially larger search tree

CS 2351 – Artificial Intelligence UNIT I

Page 52 of 116 CSE– Dhaanish Ahmed College of Engineering

The repeated states can be avoided using three different ways. They are:

1. Do not return to the state you just came from (i.e) avoid any successor that is
the same state as the node's parent.
2. Do not create path with cycles (i.e) avoid any successor of a node that is the
same as any of the node's ancestors.
3. Do not generate any state that was ever generated before.

The general TREE-SEARCH algorithm is modified with additional data
structure, such as :

Closed list - which stores every expanded node.
Open list - fringe of unexpanded nodes.

If the current node matches a node on the closed list, then it is discarded and it is
not considered for expansion. This is done with GRAPH-SEARCH algorithm.
This algorithm is efficient for problems with many repeated states

The worst-case time and space requirements are proportional to the size of the
state space, this may be much smaller than O(bd)

Searching With Partial Information

When the knowledge of the states or actions is incomplete about the
environment, then only partial information is known to the agent. This
incompleteness lead to three distinct problem types. They are:
(i) Sensorless problems (conformant problems) : If the agent has no sensors at all,
then it could be in one of several possible initial states, and each action might
therefore lead to one of possible successor states.

function GRAPH-SEARCH (problem, fringe) returns a
solution, or failure
closed <- an empty set
fringe <- INSERT (MAKE-NODE(INITIAL-STATE[problem]),
fringe)
loop do
if EMPTv?(fringe) then return failure
node <- REMOVE-FIKST (fringe)
if GOAL-TEST [problem](STATE[node]) then return SOLUTION
(node)
if STATE [node] is not in closed then
add STATE [node] to closed
fringe <- INSERT-ALL(EXPAND(node, problem), fringe)

CS 2351 – Artificial Intelligence UNIT I

Page 53 of 116 CSE– Dhaanish Ahmed College of Engineering

(ii) Contigency problems: If the environment is partially observable or if actions
are uncertain, then the agent's percepts provide new information after each
action. A problem is called adversarial if the uncertainty is caused by the actions
of another agent. To handle the situation of unknown circumstances the agent
needs a contigency plan.

(iii) Exploration problem: It is an extreme case of contigency problems, where the
states and actions of the environment are unknown and the agent must act to
discover
them.

Informed search and exploration

Uninformed search strategies can find solutions to problems by systematically
generating new states and testing them against the goal. These strategies are
inefficient in most cases.

An informed search Strategy uses problem-specific knowledge and it can find
solutions more efficiently.

Informed Heuristic Search Strategies

An informed search strategy uses problem-specific knowledge beyond the
definition of the problem itself and it can find solutions more efficiently than an
uninformed strategy.

The general approach is best first search that uses an evaluation function in
TREE-SEARCH or GRAPH-SEARCH.

Best-first search is an instance of the general TREE-SEARCH or GRAPH-
SEARCH algorithm in which a node is selected for expansion based on an
evaluation function, f(n)

The node with the lowest evaluation is selected for expansion, because the
evaluation measures distance to the goal.

Best-first search can be implemented within our general search framework via a
priority queue, a data structure that will maintain the fringe in ascending order
of f –values

CS 2351 – Artificial Intelligence UNIT I

Page 54 of 116 CSE– Dhaanish Ahmed College of Engineering

Implementation of Best-first search using general search algorithm

The key component of these algorithms is a heuristic functions denoted h(n)

h(n) = estimated cost of the cheapest path from node n to a goal node.

One constraint: if n is a goal node, then h(n) = 0

The two types of evaluation functions are:

(i) Expand the node closest to the goal state using estimated cost as the
evaluation is called greedy best first search.
(ii) Expand the node on the least cost solution path using estimated cost and
actual cost as the evaluation function is called A*search

Greedy best first search (Minimize estimated cost to reach a goal)

Definition : A best first search that uses h(n) to select next node to expand is
called greedy search
Evaluation function : The estimated cost to reach the goal state, denoted by the
letter h(n)

Algorithm :

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a
solution sequence

inputs: problem, a problem
 EVAL-FN, an evaluation function
QUEUEING -FN<- a function that orders nodes by EVAL-FN
return TREE-SEARCH(problem, QUEUEING-FN)

h(n)= estimated cost of the cheapest path from the state
at node n to a goal state

Function GREEDY-BEST-FIRST SEARCH (problem) returns a
solution or failure
return BEST-FIRST-SEARCH (problem, h)

CS 2351 – Artificial Intelligence UNIT I

Page 55 of 116 CSE– Dhaanish Ahmed College of Engineering

Example 1 : Route Finding Problem

Problem : Route finding Problem from Arad to Burcharest

Heuristic function : A good heuristic function for route-finding problems is
Straight-Line Distance to the goal and it is denoted as hSLD

(n).

Note : The values of hSLD(n) cannot be computed from the problem description
itself. Moreover, it takes a certain amount of experience

Values of hSLD-straight-line distances to Bucharest

hSLD(n) = Straight-Line distance between n and the goal
locatation

CS 2351 – Artificial Intelligence UNIT I

Page 56 of 116 CSE– Dhaanish Ahmed College of Engineering

Solution :

From the given graph and estimated cost, the goal state is identified as B u c h a
r e s t from Arad. Apply the evaluation function h (n) to find a path from Arad to
Burcharest from A to B

The first node to be expanded from Arad will be Sibiu, because it is closer to
Bucharest than either Zerind or Timisoara.

The next node to be expanded will be Fagaras, because it is closest.
Fagaras in turn generates Bucharest, which is the goal.

CS 2351 – Artificial Intelligence UNIT I

Page 57 of 116 CSE– Dhaanish Ahmed College of Engineering

For this particular problem, greedy best-first search using hSLD finds a solution
without ever expanding a node that is not on the solution path; hence, its search
cost is minimal. It is not optimal, however: the path via Sibiu and Fagaras to
Bucharest is 32 kilometers longer than the path through Rimnicu Vilcea and
Pitesti. This shows why the algorithm is called "greedy'-at each step it tries to get
as close to the goal as it can.

Minimizing h(n) is susceptible to false starts. Consider the problem of getting
from Iasi to Fagaras. The heuristic suggests that Neamt be expanded first,
because it is closest to Fagaras, but it is a dead end. The solution is to go first to
Vaslui-a step that is actually farther from the goal according to the heuristic-and
then to continue to Urziceni, Bucharest, and Fagaras.

Time and space complexity : Greedy search resembles depth first search, since it
follows one path to the goal state, backtracking occurs when it finds a dead end.
The worst case time complexity is equivalent to depth first search, that is O(bm),
where m is the maximum depth of the search space. The greedy search retains all
nodes in memory, therefore the space complexity is also O(bm) The time and
space complexity can be reduced with good heuristic function.

Optimality : It is not optimal, because the next level node for expansion is
selected only depends on the estimated cost and not the actual cost.

Completeness : No, because it can start down with an infinite path and never
return to try other possibilities.

Example 2 : Finding the path from one node to another node

Solution :

CS 2351 – Artificial Intelligence UNIT I

Page 58 of 116 CSE– Dhaanish Ahmed College of Engineering

From the given graph and estimated cost, the goal state IS identified as B from A.

Apply the evaluation function h(n) to find a path from A to B

From F, goal state B is reached. Therefore the path from A to Busing greedy
search is A - S - F - B = 450 (i.e) (140 + 99 + 211)

A* search (Minimizing the total estimated solution cost)

The most widely-known form of best-first search is called A* search (pronounced
"A-star search"). A* search is both complete and optimal.
It evaluates nodes by combining g(n), the cost to reach the node, and h(n.),the
cost to get from the node to the goal

g(n) - path cost from the start node to node n
h(n) - estimated cost of the cheapest path from n to the goal
f (n) - estimated cost of the cheapest solution through n

f(n) =g(n) + h(n)

CS 2351 – Artificial Intelligence UNIT I

Page 59 of 116 CSE– Dhaanish Ahmed College of Engineering

A* Algorithm

Example 1 : Route Finding Problem

Problem : Route finding Problem from Arad to Burcharest

Heuristic function : A good heuristic function for route-finding problems is
Straight-Line Distance to the goal and it is denoted as hSLD(n).

hSLD(n) = Straight-Line distance between n and the goal locatation

Values of hSLD-straight-line distances to Bucharest

function A* SEARCH(problem) returns a solution or failure
return BEST-FIRST-SEARCH (problem, g+h)

CS 2351 – Artificial Intelligence UNIT I

Page 60 of 116 CSE– Dhaanish Ahmed College of Engineering

Stages in an A* search for Bucharest. Nodes are labeled with f (n) = g (n) +
h(n)

CS 2351 – Artificial Intelligence UNIT I

Page 61 of 116 CSE– Dhaanish Ahmed College of Engineering

Example 2 : Finding the path from one node to another node

Solution:
From the given graph and estimated cost, the goal state is identified as B from A
Apply the evaluation function f(n) = g(n) +h(n) to find a path from A to B

CS 2351 – Artificial Intelligence UNIT I

Page 62 of 116 CSE– Dhaanish Ahmed College of Engineering

From P, goal state B is reached. Therefore the path from A to B using A* search is
A – S - R - P -B : 418 (ie) {140 + 80 + 97 + 101), that the path cost is less than
Greedy search path cost.

Time and space complexity: Time complexity depends on the heuristic function
and the admissible heuristic value. Space complexity remains in the exponential
order.

The behavior of A* search

Monotonicity (Consistency)

In search tree any path from the root, the f- cost never decreases. This condition
is true for almost all admissible heuristics. A heuristic which satisfies this
property is called monotonicity(consistency).

A heuristic h(n) is consistent if, for every node n and every successor n' of n
generated by any action a, the estimated cost of reaching the goal from n is no

CS 2351 – Artificial Intelligence UNIT I

Page 63 of 116 CSE– Dhaanish Ahmed College of Engineering

greater than the step cost of getting to n' plus the estimated cost of reaching the
goal from n':

If the heuristic is non-monotonic, then we have to make a minor correction that restores
monotonicity.

Example for monotonic

Let us consider two nodes n and n’, where n is the parent of n’

For example

g(n) = 3 and h(n) = 4. then f(n) = g(n) + h(n) = 7.
g(n’) = 54 and h(n’) = 3. then f(n’) = g(n’) + h(n’) = 8

Example for Non-monotonic

Let us consider two nodes n and n’, where n is the parent of n’. For example

g(n) = 3 and h(n) = 4. then f(n) = g(n) + h(n) = 7.
g(n’) = 4 and h(n’) = 2. then f(n’) = g(n’) + h(n’) = 6.

To reach the node n the cost value is 7, from there to reach the node n' the value
of cost has to increase as per monotonic property. But the above example does not
satisfy this property. So, it is called as non-monotonic heuristic.

How to avoid non-monotonic heuristic?

We have to check each time when we generate anew node, to see if its f-cost is
less that its parent’s f-cost; if it is we have to use the parent’s f- cost instead.

Non-monotonic heuristic can be avoided using path-max equation.

f(n') = max (f{n), g(n') + h(n'))

CS 2351 – Artificial Intelligence UNIT I

Page 64 of 116 CSE– Dhaanish Ahmed College of Engineering

Optimality

A* search is complete, optimal, and optimally efficient among all algorithms

A* using GRAPH-SEARCH is optimal if h(n) is consistent.

Completeness

A* is complete on locally finite graphs (graphs with a finite branching factor)
provided there is some constant d such that every operator costs at least d.

Drawback

A* usually runs out of space because it keeps all generated nodes in memory

Memory bounded heuristic search

The simplest way to reduce memory requirements for A* is to adapt the idea of
iterative deepening to the heuristic search context, resulting in the iterative-
deepening A" (IDA*) algorithm.

The memory requirements of A* is reduced by combining the heuristic function
with iterative deepening resulting an IDA* algorithm.

Iterative Deepening A* search (IDA*)
Depth first search is modified to use an f-cost limit rather than a depth limit for
IDA* algorithm.

Each iteration in the search expands all the nodes inside the contour for the
current f-cost and moves to the next contour with new f - cost.

Space complexity is proportional to the longest path of exploration that is bd is a
good estimate of storage requirements

Time complexity depends on the number of different values that the heuristic
function can take on

Optimality: yes, because it implies A* search.

Completeness: yes, because it implies A* search.

CS 2351 – Artificial Intelligence UNIT I

Page 65 of 116 CSE– Dhaanish Ahmed College of Engineering

Disadvantage: It will require more storage space in complex domains (i.e) Each
contour will include only one state with the previous contour. To avoid this, we
increase the f-cost
limit by a fixed amount ∈ on each iteration, so that the total number of iteration
is proportional to 1/∈. Such an algorithm is called ∈ admissible.
The two recent memory bounded algorithms are:

• Recursive Best First Search (RBfS)
• Memory bounded A* search (MA*)

Recursive Best First Search (RBFS)
A recursive algorithm with best first search technique uses only linear space.
It is similar to recursive depth first search with an inclusion (i.e.) keeps track of
the f-value of the best alternative path available from any ancestor of the current
node.
If the current node exceeds this limit, the recursion unwinds back to the
alternative path and replaces the f-value of each node along the path with the
best f-value of its children.
The main idea lies in to keep track of the second best alternate node (forgotten
node) and decides whether it's worth to reexpand the subtree at some later time.

Algortihm For Recursive Best-First Search

Stages in an RBFS search for the shortest route to Bucharest.

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a
solution, or failure
RBFS(problem,MAKE-NODE(INITIAL-STATE[problem]), ∞)
function, RBFS(problem, node, f_limit) returns a
solution, or failure and a new f-cost limit
if GOAL-TEST[problem](state) then return node
successors <- EXPAND(node, problem)
if successors is empty then return failure, ∞
for each s in successors do
f[s]<-max(g(s) + h(s),f[node])
repeat
best <- the lowest f-value node in successors
if f[best] > f_limit then return failure,f[best]
alternative <- the second-lowest f-value among successors
result,f[best]<-
RBFS(problem,best,min(f_limit,alternative))
if result ≠ failure then return result

CS 2351 – Artificial Intelligence UNIT I

Page 66 of 116 CSE– Dhaanish Ahmed College of Engineering

Example:

a) After expanding A, S, and R, the current best leaf(P) has a value that is worse
than the best alternative path (F)

CS 2351 – Artificial Intelligence UNIT I

Page 67 of 116 CSE– Dhaanish Ahmed College of Engineering

f-limit value of each recursive call is shown on top of each current node. After
expanding R, the condition f[best] >f-limit (417 > 415) is true and returns f[best]
to that node.

b) After unwinding back to and expanding F

Here the f[best] is 450 and which is greater than the f-limit of 417. Therefore if
returns and unwinds with f[best] value to that node.

c) After switching back to Rand expanding P.

The best alternative path through T costs at least 447, therefore the path through
R and P is considered as the best one.

Time and space complexity : RBFS is an optimal algorithm if the heuristic
function h(n) is admissible. Its time complexity depends both on the accuracy of
the heuristic function and on how often the best path changes as nodes are
expanded. Its space complexity is O(bd), even though more is available.

A search techniques (algorithms) which uses all available memory are:

a. MA* (Memory - bounded A*)
b. SMA* (Simplified MA*)

CS 2351 – Artificial Intelligence UNIT I

Page 68 of 116 CSE– Dhaanish Ahmed College of Engineering

Simplified Memory - bounded A* search (SMA*)

SMA* algorithm can make use of all available memory to carry out the search.

Properties of SMA* algorithm:

(a) It will utilize whatever memory is made available to it.
(b) It avoids repeated states as far as its memory allows.

It is complete if the available memory is sufficient to store the deepest solution
path.
It is optimal if enough memory is available to store the deepest solution path.
Otherwise, it returns the best solution that can be reached with the available
memory.

Advantage: SMA* uses only the available memory.

Disadvantage: If enough memory is not available it leads to unoptimal solution.

Space and Time complexity: depends on the available number of node.

The SMA* Algorithm

CS 2351 – Artificial Intelligence UNIT I

Page 69 of 116 CSE– Dhaanish Ahmed College of Engineering

Example:

The values at the nodes are given as per the A* function i.e. g+h=f

function SMA*(problem) returns a solution sequence
inputs: problem, a problem
local variables: Queue, a queue of nodes ordered by

f-cost

Queue<-MAKE-QUEUE({MAKE-NODE(INITIAL-STATE[problem])})
loop do
if Queue is empty then return failure
n<-deepest least-f-cost node in Queue
if GOAL-TEST(n) then return success
s<-NEXT-SUCCESSOR(n)
if s is not a goal and is at maximum depth then
f{s)<- ∞
else
f{s)<- MAX(f(n), g(s)+h(s))
if all of n’s successors have been generated then
update n’s f-cost and those of its ancestors if necessary
if SUCCESSORS(n) all in the memory then remove n from
Queue
if memory is full then
delete shallowest, highest-f-cost node in Queue
remove it from its parent's successor list
insert its parent on Queue if necessary
insert s on Queue
end

CS 2351 – Artificial Intelligence UNIT I

Page 70 of 116 CSE– Dhaanish Ahmed College of Engineering

From the Figure we identified that the goal states are D,F,J,I because the h value
of these nodes are zero (marked as a square)

Available memory - 3 nodes of storage space.

Task: Find a optimal path from A to anyone of the goal state.

Solution:

CS 2351 – Artificial Intelligence UNIT I

Page 71 of 116 CSE– Dhaanish Ahmed College of Engineering

HEURISTIC FUNCTIONS

The 8-puzzle was one of the earliest heuristic search problems.

Given :

CS 2351 – Artificial Intelligence UNIT I

Page 72 of 116 CSE– Dhaanish Ahmed College of Engineering

Task : Find the shortest solution using heuristic function that never over
estimates the number of steps to the goal.

Solution : To perform the given task two candidates are required, which are
named as h1 and h2

h1 = the number of misplaced tiles.

All of the eight tiles are out of position in the above figure, so the start state
would have hl = 8. hl is an admissible heuristic, because it is clear that any tile
that is out of place must be moved at least once.

h2 = the sum of the distances of the tiles from their goal positions. Because tiles
cannot move along diagonals, the distance we will count is the sum of the
horizontal and vertical distances. This is called as the city block distance or
Manhattan distance. h2 is also admissible, because any move can do is move one
tile one step closer to the goal. Tiles 1 to 8 in the start state give a Manhattan
distance of

h2=3+1+2+2+2+3+3+2=18.

True solution cost is h1 + h2 = 26

Example :

h1=7

h2 = 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18

True Solution Cost is h1 + h2 = 25

CS 2351 – Artificial Intelligence UNIT I

Page 73 of 116 CSE– Dhaanish Ahmed College of Engineering

Effective branching factor(b*)

In the search tree, if the total number of nodes expanded by A* for a particular
problem is N, and the solution depth is d, then b* is the branching factor that a
uniform tree of depth d, would have N nodes. Thus:

N= l+ b* + (b*)2 + (b*)3 + +(b*)d

Example:

For example, if A* finds a solution at depth 5 using 52 nodes, then the effective
branching factor is 1.92.

Depth = 5
N = 52

Effective branching factor is 1.92.

Relaxed problem

A problem with less restriction on the operators is called a relaxed problem. If the
given problem is a relaxed problem then it is possible to produce good heuristic
function. Example: 8 puzzle problem, with minimum number of operators.

Local Search Algorithms And Optimization Problems

In many optimization problems, the path to the goal is irrelevant; the goal state
itself is the solution.

The best state is identified from the objective function or heuristic cost function.
In such cases, we can use local search algorithms (ie) keep only a single current
state, try to improve it instead of the whole search space explored so far

For example, in the 8-queens problem, what matters is the final configuration of
queens, not the order in which they are added.

Local search algorithms operate a single current state (rather than multiple
paths) and generally move only to neighbors of that state. Typically, the paths
followed by the search are not retained.

CS 2351 – Artificial Intelligence UNIT I

Page 74 of 116 CSE– Dhaanish Ahmed College of Engineering

They have two key advantages:

(1) They use very little memory-usually a constant amount; (2) They can often
find reasonable solutions in large or infinite (continuous) state spaces for which
systematic algorithms are unsuitable.

The local search problem is explained with the state space land scape. A
landscape has:

Location - defined by the state

Elevation - defined by the value of the heuristic cost function or objective
function, if elevation corresponds to cost then the lowest valley (global
minimum) is achieved. If elevation corresponds to an objective function, then the
highest peak (global maximum) is achieved.

A complete local search algorithm always finds a goal if one exists, an optimal
algorithm always finds a global minimum/maximum.

A one-dimensional state space landscape in which elevation corresponds to
the objective function.

Applications

Integrated - circuit design
Factory - floor layout
Job-shop scheduling
Automatic programming
Vehicle routing
Telecommunications network Optimization
Advantages

CS 2351 – Artificial Intelligence UNIT I

Page 75 of 116 CSE– Dhaanish Ahmed College of Engineering

 Constant search space. It is suitable for online and offline search
 The search cost is less when compare to informed search
 Reasonable solutions are derived in large or continuous state space for

which systematic algorithms are unsuitable.

Some of the local search algorithms are:

1. Hill climbing search (Greedy Local Search)
2. Simulated annealing
3. Local beam search
4. Genetic Algorithm (GA)

Hill Climbing Search (Greedy Local Search)

The hill-climbing search algorithm is simply a loop that continually moves in
the direction of increasing value. It terminates when it reaches a "peak" where no
neighbor has a higher value. The algorithm does not maintain a search tree, so
the current node data structure need only record the state and its objective
function value. At each step the current node is replaced by the best neighbor;

Hill-climbing search algorithm

To illustrate hill-climbing, we will use the 8-queens, where each state has 8
queens on the board, one per column. The successor function returns all possible
states generated by moving a single queen to another square in the same column
(so each state has 8 x 7 = 56 successors).

Hill-climbing algorithms typically choose randomly among the set of best
successors, if there is more than one.

function HILL-CLIMBING(problem) returns a state that is a
local maximum
inputs: problem, a problem
local variables:current, a node and neighbor, a node
current <- MAKE-NODE(INITIAL-STATE[problem])
loop do
neighbor <- a highest-valued successor of current
if VALUE[neighbor] <= VALUE[current] then
return STATE[current]
current <- neighbor

CS 2351 – Artificial Intelligence UNIT I

Page 76 of 116 CSE– Dhaanish Ahmed College of Engineering

The heuristic cost function h is the number of pairs of queens that are attacking
each other, either directly or indirectly.

The global minimum of this function is zero, which occurs only at perfect
solutions.

An 8-queens state with heuristic cost estimate h = 17, showing the value of h for
each possible successor obtained by moving a queen within its column. The best
moves are marked.

A local minimum in the 8-queens state space; the state has h = 1 but every
successor has a higher cost.

CS 2351 – Artificial Intelligence UNIT I

Page 77 of 116 CSE– Dhaanish Ahmed College of Engineering

Hill climbing often gets stuck for the following reasons:

Local maxima or foot hills : a local maximum is a peak that is higher than each
of its neighboring states, but lower than the global maximum

Example :

The evaluation function value is maximum at C and from their there is no path
exist for expansion. Therefore C is called as local maxima. To avoid this state,
random node is selected using back tracking to the previous node.

Plateau or shoulder: a plateau is an area of the state space landscape where the
evaluation function is flat. It can be a flat local maximum.

Example :

The evaluation function value of B C D are same, this is a state space of plateau.
To avoid this state, random node is selected or skip the level (i.e) select the node
in the next level

CS 2351 – Artificial Intelligence UNIT I

Page 78 of 116 CSE– Dhaanish Ahmed College of Engineering

Ridges: Ridges result in a sequence of local maxima that is very difficult for
greedy algorithms to navigate. But the disadvantage is more calculations to be
done function

Structure of hill climbing drawbacks

Variants of hill-climbing

Stochastic hill climbing - Stochastic hill climbing chooses at random from
among the uphill moves; the probability of selection can vary with the steepness
of the uphill move.

First-choice hill climbing - First-choice hill climbing implements stochastic hill
climbing by generating successors randomly until one is generated that is better
than the current state

Random-restart hill climbing - Random-restart hill climbing adopts the well
known adage, "If at first you don't succeed, try, try again." It conducts a series of
hill-climbing searches from randomly generated initial state, stopping when a
goal is found.

Simulated annealing search

An algorithm which combines hill climbing with random walk to yield both
efficiency and completeness

In metallurgy, annealing is the process used to temper or harden metals and
glass by heating them to a high temperature and then gradually cooling them

When the search stops at the local maxima, we will allow the search to take some
down Hill steps to escape the local maxima by allowing some "bad" moves but
gradually decrease their size and frequency. The node is selected randomly and
it checks whether it is a best move or not. If the move improves the situation, it
is executed. ∆E variable is introduced to calculate the probability of worsened. A
Second parameter T is introduced to determine the probability.

The simulated annealing search algorithm

CS 2351 – Artificial Intelligence UNIT I

Page 79 of 116 CSE– Dhaanish Ahmed College of Engineering

Property of simulated annealing search

T decreases slowly enough then simulated annealing search will find a global
optimum with probability approaching one

Applications

VLSI layout
Airline scheduling

Local beam search

Local beam search is a variation of beam search which is a path based algorithm.
It uses K states and generates successors for K states in parallel instead of one
state and its successors in sequence. The useful information is passed among the
K parallel threads.

The sequence of steps to perform local beam search is given below:

• Keep track of K states rather than just one.
• Start with K randomly generated states.

function SIMULATED-ANNEALING(problem, schedule) returns a
solution state
inputs: problem, a problem
schedule, a mapping from time to "temperature"
local variables: current, a node
next, a node
T, a "variable" controlling the probability of downward
steps
current <- MAKE-NODE(INITIAL-STATE[problem])
for t<- l to ∞ do
T <- schedule[t]
if T = 0 then return current
next <- a randomly selected successor of current
∆E <- VALUE[next] - VALUE[current]
if ∆E > 0 then current <- next
else current <- next only with probability e∆ E/T

CS 2351 – Artificial Intelligence UNIT I

Page 80 of 116 CSE– Dhaanish Ahmed College of Engineering

• At each iteration, all the successors of all K states are generated.
• If anyone is a goal state stop; else select the K best successors from the

complete list and repeat.

This search will suffer from lack of diversity among K states.

Therefore a variant named as stochastic beam search selects K successors at
random, with the probability of choosing a given successor being an increasing
function of its value.

Genetic Algorithms (GA)

A genetic algorithm (or GA) is a variant of stochastic beam search in which
successor states are generated by combining two parent states, rather than by
modifying a single state

GA begins with a set of k randomly generated states, called the population. Each
state, or individual, is represented as a string over a finite alphabet.

For Example an 8 queen’s state could be represented as 8 digits, each in the range
from 1 to 8.

Initial population: K randomly generated states of 8 queen problem

Individual (or) state: Each string in the initial population is individual (or) state.
In one state, the position of the queen of each column is represented.

Example: The state with the value 24748552 is derived as follows:

The Initial Population (Four randomly selected States) are :

CS 2351 – Artificial Intelligence UNIT I

Page 81 of 116 CSE– Dhaanish Ahmed College of Engineering

Evaluation function (or) Fitness function: A function that returns higher values
for better State. For 8 queens problem the number of non attacking pairs of
queens is defined as fitness function

Minimum fitness value is 0

Maximum fitness value is : 8*7/2 = 28 for a solution

The values of the four states are 24, 23, 20, and 11.

The probability of being chosen for reproduction is directly proportional to the
fitness score, which is denoted as percentage.

24 / (24+23+20+11) = 31%
23 / (24+23+20+11) = 29%
20 / (24+23+20+11) = 26%
11 / (24+23+20+11) = 14%

Selection : A random choice of two pairs is selected for reproduction, by
considering the probability of fitness function of each state. In the example one
state is chosen twice probability of 29%) and the another one state is not chosen
(Probability of 14%)

Cross over: Each pair to be mated, a crossover point is randomly chosen. For the
first pair the crossover point is chosen after 3 digits and after 5 digits for the
second pair.

CS 2351 – Artificial Intelligence UNIT I

Page 82 of 116 CSE– Dhaanish Ahmed College of Engineering

offspring : Offspring is created by crossing over the parent strings in the
crossover point. That is, the first child of the first pair gets the first 3 digits from
the first parent and the remaining digits from the second parent. Similarly the
second child of the first pair gets the first 3 digits from the second parent and the
remaining digits from the first parent.

The 8-queens states corresponding to the first two parents

Mutation : Each location is subject to random mutation with a small
independent probability. One digit was mutated in the first, third, and fourth
offspring

CS 2351 – Artificial Intelligence UNIT I

Page 83 of 116 CSE– Dhaanish Ahmed College of Engineering

Production of Next Generation of States

The initial population in (a) is ranked by the fitness function in (b), resulting in
pairs for mating in (c). They produce offspring in (d), which are subject to
mutation in(e).

The sequence of steps to perform GA is summarized below:

• A successor state is generated by combining two parent states.
• Start with K randomly generated states population
• Each state or individual is represented as a string over a finite alphabet

(often a string of O's and 1's)

function GENETIC-ALGORITHM(population, FITNESS-FN)
returns an individual
inputs: population, a set of individuals
FITNESS-FN, a function that measures the fitness of an
individual
repeat
new-population <- empty set
loop for i from 1 to SIZE(population) do
x <- RANDOM-SELECTION(Population,FITNESS-FN)
y <- RANDOM-SELECTION(Population,FITNESS-FN)
child <- REPRODUCE(yX),
if (small random probability) then child MUTATE(chi1d)
add child to new-population
population <- new-population
until some individual is fit enough, or enough time has
elapsed
return the best individual in population, according to
FITNESS-FN
function REPRODUCE(x,y), returns an individual
inputs: x, y, parent individuals
n <- LENGTH(x)
c <- random number from 1 to n
return APPEND(SUBSTRING(x,1,c),SUBSTRING(y, c + 1, n))

CS 2351 – Artificial Intelligence UNIT I

Page 84 of 116 CSE– Dhaanish Ahmed College of Engineering

• Evaluation function (fitness function) is applied to find better states
with higher values.

• Produce the next generation of states by selection, crossover and
mutation

Local Search In Continuous Spaces

Local Search in continuous space is the one that deals with the real world
problems.

• One way to solve continuous problems is to discretize the
neighborhood of each state.

• Stochastic hill climbing and simulated annealing are applied directly in
the continuous space

• Steepest - ascent hill climbing is applied by updating the formula of
current state

x <- x + α ∇ f(x)

α - small constant

 ∇ f(x) - magnitude & direction of the steepest slope.
• Empirical gradient, line search, Newton-Raphson method can be

applied in this domain to find the successor state.
• Local search methods in continuous space may also lead to local

maxima, ridges and plateau. This situation is avoided by using
random restart method.

Online Search Agents and Unknown Environments

Online search agent operates by interleaving computation and action, that is first
it takes an action, then it observes the environment and computes the next action,
whereas ,the offline search computes complete solution (problem solving agent)
before executing the problem solution.

online search agents suits well for the following domains.

 Dynamic or Semi dynamic domain
 Stochastic domain

Online search is a necessary idea for an exploration problem, where the states
and actions are unknown to the agent. For example, consider a newborn baby for
exploration problem and the baby's gradual discovery of how the world works is
an online search process

CS 2351 – Artificial Intelligence UNIT I

Page 85 of 116 CSE– Dhaanish Ahmed College of Engineering

Online search problems

An online search problem can be solved by an agent executing actions rather
than by a computational process. The agent knows the following terms to do the
search in the given environment

• ACTIONS(S) - which returns a list of actions allowed in state s ;
• c(s, a, s’) - The step-cost function known to the agent when it reaches s’
• GOAL-TEST(S).

Online search agents

An online algorithm, expand only a node that it physically occupies. After each
action, an online agent receives a percept to know the state it has reached and it
can augment its map of the environment, to decide where to go next.

An online depth-first search agent: This agent is implemented with the
following requirements:

♦ result [a, s] - records the state resulting from executing action in state s.
♦ An action from the current state has not been explored, then it is explored

and returns action a.
♦ If there is no action exists from the current and possible to backtrack then

backtracking is done with action b returns action a.
♦ If the agent has run out of states to which it can backtrack then its search is

complete.

An online search agent that uses depth-first exploration

CS 2351 – Artificial Intelligence UNIT I

Page 86 of 116 CSE– Dhaanish Ahmed College of Engineering

Online local search

Hill climbing search technique can be used to perform online local search
because it keeps just one current state in memory. To avoid the drawback of local
maxima, random walk is Chosen to explore the environment instead of random
restart method. The concept of hill climbing with memory stores a "current best
estimate". H(s) of the cost to reach the goal from each state that has been visited
is implemented as Learning Real-Time A* (LRTA*) algorithm,

Sequence of steps for LRTA* algorithm

◊ It builds a map of the environment using the result table.
◊ H(s) is initially empty, when tile process starts h(s) is initialized for new

states and it is updated when the agent gains experience In the state space.
◊ Each state is updated with minimum H(s) out of all possible actions and

the same action is returned

function ONLINE-DFS-AGENT(s’) returns an action
inputs: s', a percept that identifies the current state
static: result, a table, indexed by action and state,
initially empty
unexplored, a table that lists, for each visited state,
the actions not yet tried
unbacktracked, a table that lists, for each visited
state, the backtracks not yet tried
s, a, the previous state and action, initially null
if GOAL-TEST(s’) then return stop
if s' is a new state then unexp1ored[s’]<- ACTIONS(s')
if s is not null then do
result[a, s] <- s'
add s to the front of unbacktracked[s’]
if unexplored[s’] is empty then
if unbacktracked[s’] is empty then return stop
else a <- an action b such that result[b, s’] =
POP(unbacktracked[s'])
else a <- POP(unexplored[s'])
s <- s'
return a

CS 2351 – Artificial Intelligence UNIT I

Page 87 of 116 CSE– Dhaanish Ahmed College of Engineering

LRTA* algorithm

CONSTRAINT SATISFACTION PROBLEMS(CSP)

Constraint satisfaction problems (CSP) are mathematical problems where one
must find states or objects that satisfy a number of constraints or criteria. A
constraint is a restriction of the feasible solutions in an optimization problem.

Some examples for CSP's are:

The n-queens problem
A crossword puzzle
A map coloring problem
The Boolean satisfiability problem
A cryptarithmetic problem

All these examples and other real life problems like time table scheduling,
transport scheduling, floor planning etc. are instances of the same pattern,

function LRTA*-AGENT(s’) returns an action
inputs: s’ , a percept that identifies the current state
static: result, a table, indexed by action and state,
initially empty
H, a table of cost estimates indexed by state, initially
empty
s, a, the previous state and action, initially null
if GOAL-TEST(s’) then return stop
if s' is a new state (not in H) then H[s’] <- h(s’)
unless s is null
result[a, s] <- s’
H[s] <- min LRTA*-COST(s, b , result[b,s],H)

b ∈ ACTIONS(S)
a <- an action b in ACTIONS(s’) that minimizes LRTA*-
COST(s', b,result[b, s’],H)
s <- s’
return a
function LRTA*-COST(s , a, s', H) returns a cost
estimate
if s’ is undefined then return h(s)
else return c(s, a, s’) + H[s’]

CS 2351 – Artificial Intelligence UNIT I

Page 88 of 116 CSE– Dhaanish Ahmed College of Engineering

A Constraint Satisfaction Problem(or CSP) is defined by a set of variables
{X1,X2,….Xn,} and a set of constraints {C1,C2,…,Cm}. Each variable Xi has a
nonempty domain D, of possible values. Each constraint Ci involves some subset
of variables and specifies the allowable combinations of values for that subset.

A State of the problem is defined by an assignment of values to some or all of
the variables,{Xi = vi, Xj = vj,…}. An assignment that does not violate any
constraints is called a consistent or legal assignment.

A complete assignment is one in which every variable is mentioned, and a
solution to a CSP is a complete assignment that satisfies all the constraints. Some
CSPs also require a solution that maximizes an objective function.

Example for Constraint Satisfaction Problem :

The map coloring problem. The task of coloring each region red, green or blue in
such a way that no neighboring regions have the same color.

Map of Australia showing each of its states and territories

We are given the task of coloring each region either red, green, or blue in such a
way that the neighboring regions must not have the same color.

To formulate this as CSP, we define the variable to be the regions: WA, NT, Q,
NSW, V, SA, and T.

The domain of each variable is the set {red, green, blue}.

CS 2351 – Artificial Intelligence UNIT I

Page 89 of 116 CSE– Dhaanish Ahmed College of Engineering

The constraints require neighboring regions to have distinct colors: for example,
the allowable combinations for WA and NT are the pairs

{(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)}.

(The constraint can also be represented as the inequality WA ≠ NT)

There are many possible solutions, such as

{ WA = red, NT = green, Q = red, NSW = green, V = red ,SA = blue,T = red}.

Constraint Graph : A CSP is usually represented as an undirected graph, called
constraint graph where the nodes are the variables and the edges are the binary
constraints.

The map-coloring problem represented as a constraint graph.

CSP can be viewed as a standard search problem as follows :

 Initial state : the empty assignment {},in which all variables are

unassigned.
 Successor function : a value can be assigned to any unassigned variable,

provided that it does not conflict with previously assigned variables.
 Goal test : the current assignment is complete.
 Path cost : a constant cost(E.g.,1) for every step.

Every solution must be a complete assignment and therefore appears at depth n
if there are n variables. So Depth first search algorithms are popular for CSPs.

CS 2351 – Artificial Intelligence UNIT I

Page 90 of 116 CSE– Dhaanish Ahmed College of Engineering

Varieties of CSPs

Discrete variables

Discrete variables can have

 Finite Domains
 Infinite domains

Finite domains

The simplest kind of CSP involves variables that are discrete and have finite
domains.

Map coloring problems are of this kind. The 8-queens problem can also be
viewed as finite-domain CSP, where the variables Q1,Q2,…..Q8 are the positions
each queen in columns 1,….8 and each variable has the domain {1,2,3,4,5,6,7,8}.

If the maximum domain size of any variable in a CSP is d, then the number of
possible complete assignments is O(dn) – that is, exponential in the number of
variables.

Finite domain CSPs include Boolean CSPs, whose variables can be either true or
false.

Infinite domains

Discrete variables can also have infinite domains – for example, the set of
integers or the set of strings. With infinite domains, it is no longer possible to
describe constraints by enumerating all allowed combination of values. For
example, if Jobl, which takes five days, must precede Jobs, then we would need a
constraint language of algebraic inequalities such as

 Startjob1 + 5 <= Startjob3.
Continuous domains

CSPs with continuous domains are very common in real world. For example, in
operation research field, the scheduling of experiments on the Hubble Telescope
requires very precise timing of observations; the start and finish of each
observation and maneuver are continuous-valued variables that must obey a
variety of astronomical, precedence and power constraints.

CS 2351 – Artificial Intelligence UNIT I

Page 91 of 116 CSE– Dhaanish Ahmed College of Engineering

The best known category of continuous-domain CSPs is that of linear
programming problems, where the constraints must be linear inequalities
forming a convex region. Linear programming problems can be solved in time
polynomial in the number of variables.

Varieties of constraints :

Unary constraints – Which restricts a single variable.
Example : SA ≠ green

Binary constraints - relates pairs of variables.
Example : SA ≠ WA

Higher order constraints involve 3 or more variables.

Example : cryptarithmetic puzzles. Each letter stands for a distinct digit

The aim is to find a substitution of digits for letters such that the resulting sum is
arithmetically correct, with the added restriction that no leading zeros are
allowed.

Constraint graph for the cryptarithmetic Problem

Alldiff constraint can be broken down into binary constraints - F ≠ T, F≠ U, and
so on.
The addition constraints on the four columns of the puzzle also involve several
variables and can be written as

O + O = R + 10 . X1

X1 + W + W = U + 10 . X2

CS 2351 – Artificial Intelligence UNIT I

Page 92 of 116 CSE– Dhaanish Ahmed College of Engineering

X1 + T + T = O + 10 . X3
X3 = F

Where X1, X2, and X3

• Assignment problems Example : who teaches what class.

 are auxiliary variables representing the digit (0 or 1)
carried over into the next column.

Real World CSP's : Real world problems involve read-valued variables,

• Timetabling Problems Example : Which class is offered when & where?
• Transportation Scheduling
• Factory Scheduling

Backtracking Search for CSPs

The term backtracking search is used for depth-first search that chooses values
for one variable at a time and backtracks when a variable has no legal values left
to assign.

Part of search tree generated by simple backtracking for the map coloring
problem

CS 2351 – Artificial Intelligence UNIT I

Page 93 of 116 CSE– Dhaanish Ahmed College of Engineering

Improving backtracking efficiency is done with general purpose methods, which
can give huge gains in speed.

• Which variable should be assigned next and what order should be tried?
• What are the implications of the current variable assignments for the other

unassigned variables?
• Can we detect inevitable failure early?

Variable & value ordering: In the backtracking algorithm each unassigned
variable is chosen from minimum Remaining Values (MRV) heuristic, that is
choosing the variable with the fewest legal values. It also has been called the
"most constrained variable" or "fail-first" heuristic.

If the tie occurs among most constrained variables then most constraining
variable is chosen (i.e.) choose the variable with the most constraints on
remaining variable. Once a variable has been selected, choose the least
constraining value that is the one that rules out the fewest values in the
remaining variables.

Propagating information through constraints

So far our search algorithm considers the constraints on a variable only at the
time that the variable is chosen by SELECT-UNASSIGNED-VARIABLE. But by
looking at some of the constraints earlier in the search, or even before the search
has started, we can drastically reduce the search space.

CS 2351 – Artificial Intelligence UNIT I

Page 94 of 116 CSE– Dhaanish Ahmed College of Engineering

Forward checking

One way to make better use of constraints during search is called forward
checking. Whenever a variable X is assigned, the forward checking process looks
at each unassigned variable Y that is connected to X by a constraint and deletes
from Y ’s domain any value that is inconsistent with the value chosen for X.

The progress of a map-coloring search with forward checking.

In forward checking WA = red is assigned first; then forward checking deletes red
from the domains of the neighboring variables NT and SA. After Q = green, green
is deleted from the domains of NT, SA, and NSW. After V = blue, blue is deleted
from the domains of NSW and SA, leaving SA with no legal values. NT and SA
cannot be blue

Constraint propagation

Although forward checking detects many inconsistencies, it does not detect all of
them.

Constraint propagation is the general term for propagating the implications of a
constraint on one variable onto other variables.

Constraint propagation repeatedly enforces constraints locally to detect
inconsistencies. This propagation can be done with different types of consistency
techniques. They are:

Node consistency (one consistency)
Arc consistency (two consistency)
Path consistency (K-consistency)

CS 2351 – Artificial Intelligence UNIT I

Page 95 of 116 CSE– Dhaanish Ahmed College of Engineering

Node consistency

• Simplest consistency technique
• The node representing a variable V in constraint graph is node consistent if

for every value X in the current domain of V, each unary constraint on V is
satisfied.

• The node inconsistency can be eliminated by simply removing those values
from the domain D of each variable V that do not satisfy unary constraint on
V.

Arc Consistency

The idea of arc consistency provides a fast method of constraint propagation that
is substantially stronger than forward checking. Here, 'arc’ refers to a directed arc
in the constraint graph, such as the arc from SA to NSW. Given the current
domains of SA and NSW, the arc is consistent if, for every value x of SA, there is
some value y of NSW that is consistent with x.

In the constraint graph, binary constraint corresponds to arc. Therefore this type
of consistency is called arc consistency.

Arc (vi, vj) is arc consistent if for every value X the current domain of vi there is
some value Y in the domain of vj such vi =X and vj=Y is permitted by the binary
constraint between vi and vj

Arc-consistency is directional ie if an arc (vi, vj) is consistent than it does not
automatically mean that (vj, vi) is also consistent.

An arc (vi, vj) can be made consistent by simply deleting those values from the
domain of Di for which there is no corresponding value in the domain of Dj such
that the binary constraint between Vi and vj is satisfied - It is an earlier detection
of inconstency that is not detected by forward checking method.

CS 2351 – Artificial Intelligence UNIT I

Page 96 of 116 CSE– Dhaanish Ahmed College of Engineering

The different versions of Arc consistency algorithms are exist such as AC-I,
AC2,AC-3, AC-4, AC-S; AC-6 & AC-7, but frequently used are AC-3 or AC-4.

AC - 3 Algorithm

In this algorithm, queue is used to cheek the inconsistent arcs.

When the queue is not empty do the following steps:

 Remove the first arc from the queue and check for consistency.
 If it is inconsistent remove the variable from the domain and add a new

arc to the queue
 Repeat the same process until queue is empty

k-Consistency (path Consistency)

A CSP is k-consistent if, for any set of k - 1 variables and for any consistent
assignment to those variables, a consistent value can always be assigned to any
kth variable

function AC-3(csp) returns the CSP, possibly with
reduced domains
inputs: csp, a binary CSP with variables {X1, X2, . . . ,
Xn}
local variables: queue, a queue of arcs, initially all
the arcs in csp
while queue is not empty do
(Xi, Xj) <- REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUEXS(xi,xj) then
for each Xk in NEIGHBORS[Xj) do
add (Xk , Xi)to queue

function REMOVE-INCONSISTENT-VALUEXS(xi,xj) returns true
iff we remove a value
removed <-false
for each x in DOMAIN[xi] do
if no value y in DOMAIN[xj] allows (x, y) to satisfy the
constraint between Xi and Xj
then delete x from DOMAIN[Xi]removed <- true
return removed

CS 2351 – Artificial Intelligence UNIT I

Page 97 of 116 CSE– Dhaanish Ahmed College of Engineering

 1-consistency means that each individual variable by itself is consistent;

this is also called node consistency.
 2-consistency is the same as arc consistency.
 3-consistency means that any pair of adjacent variables can always be

extended to a third neighboring variable; this is also called path
consistency.

Handling special constraints

All diff constraint - All the variables involved must have distinct values.

Example: Crypt arithmetic problem

The inconsistency arises in All diff constraint when m>n (i.e.) m variables are
involved in the constraint and n possible distinct values are there. It can be
avoided by selecting the variable in the constraint that has a singleton. domain
and delete the variable's value from the domain of remaining variables, until the
singleton variables are-exist. This simple algorithm will resolve the inconsistency
of the problem.

Resource constraint (Atmost Constraint) - Higher order constraint or atmost
constraint, in which consistency is achieved by deleting the maximum value of
any domain if it is not consistent with minimum values; of the other domains.

Intelligent backtracking

Chronological backtracking : When a branch of the search fails, back up to the
preceding variable and try a different value for it (i.e.) the most recent decision
point is revisited. This will lead to inconsistency in real world problems (map
coloring problem) that can't be resolved. To overcome the disadvantage of
chronological backtracking, an intelligence backtracking method is proposed.

Conflict directed backtracking: When a branch of the search fails, backtrack to
one of the set of variables that caused the failure-conflict set. The conflict set for
variable X is the set of previously assigned variables that are connected to X by
constraints. A backtracking algorithm that was conflict sets defined in this way is
called conflict directed backtracking

Local Search for CSPs

 Local search method is effective in solving CSP's, because complete state
formulation is defined.

CS 2351 – Artificial Intelligence UNIT I

Page 98 of 116 CSE– Dhaanish Ahmed College of Engineering

 Initial state - assigns a value to every variable.
 Successor function - works by changing the value of each variable

Advantage : useful for online searching when the problem changes.
Ex : Scheduling problems

The MIN-CONFLICTS algorithm for solving CSPs by local search.

A two-step solution for an &-queens problem using min-conflicts. At each stage,
a queen is chosen for reassignment in its column. The number of conflicts (in this
case, the number of attacking queens) is shown in each square.

The structure of problems

The complexity of solving a CSP-is strongly related to the structure of its
constraint graph. If CSP can be divided into independent sub problems, then
each sub problem is solved independently then the solutions are combined.
When the n variables are divided as n/c subproblems, each will take dc work to
solve. Hence the total work is O(dc n/c). If n=lO, c=2 then 5 problems are reduced
and solved in less time.

function MIN-CONFLICTS (CSP, max-steps) returns a
solution or failure
inputs: csp, a constraint satisfaction problem
max-steps, the number of steps allowed before giving up
current <- an initial complete assignment for csp
for i = 1 to max-steps do
if current is a solution for csp then return current
var <- a randomly chosen, conflicted variable from
VARIABLES[CSP]
value <- the value v for var that minimizes
CONFLICTS(var, v, current, csp)
set var = value in current
return failure

CS 2351 – Artificial Intelligence UNIT I

Page 99 of 116 CSE– Dhaanish Ahmed College of Engineering

Completely independent sub problems are rare, in most cases sub problems of a
CSP are connected

The way how to convert the constraint graph of a tree structure CSP into linear
ordering of the variables consistent with the tree is shown in Figure. Any two
variables are connected by atmost one path in the tree structure

If the constraint graph of a CSP forms a tree structure then it can be solved in
linear time number of variables). The algorithm has the following steps.
1. Choose any variable as the root of the tree and order the variables from the
root to the leaves in such a way that every node's parent in the tree preceeds it in
the ordering label the variables Xl Xn in order, every variable except the root
has exactly one parent variable.

2. For j from n down 2, apply arc consistency to the arc (Xi , Xj), where Xi is the
parent of Xj removing values from Domain [Xi] as necessary.

3. For j from 1 to n, assign any value for Xj consistent with the value assigned for
Xi, where Xi is the parent of Xj Keypoints of this algorithm are as follows:

 Step-(2), CSP is arc consistent so the assignment of values in step (3)
requires no backtracking.
 Step-(2), the arc consistency is applied in reverse order to ensure the
consistency of arcs that are processed already.

General constraint graphs can be reduced to trees on two ways. They are:

 (a) Removing nodes - Cutset conditioning
 (b) Collapsing nodes together - Tree decomposition.

CS 2351 – Artificial Intelligence UNIT I

Page 100 of 116 CSE– Dhaanish Ahmed College of Engineering

(a) Removing nodes - Cutset conditioning

 Assign values to some variables so that the remaining variables form a
tree.

 Delete the value assigned variable from the list and from the domains of

the other variables any values that are inconsistent with the value chosen
for the variable.

 This works for binary CSP's and not suitable for higher order constraints.

 The remaining problem (tree structure) is solved in linear order time

variables.

Example: In the constraint graph of map coloring problem, the region SA is
assigned with a value and it is removed to make the problem in the form of tree
structure, then it is solvable in linear time

The original constraint graph

The constraint graph after the removal of SA

CS 2351 – Artificial Intelligence UNIT I

Page 101 of 116 CSE– Dhaanish Ahmed College of Engineering

 If the value chosen for the variable to be deleted for tree structure is
wrong, then the following algorithm is executed.

 (i) Choose a subset S from VARIABLES[CSP] such that the constraint
graph becomes a tree after removal of S-cycle cutset.

 (ii) For each variable on S with assignment satisfies all constraints on S.

 * Remove from the deomains of the remaining variables any values
that are inconsistent with the assignment for S.

 * If the remaining CSP has a solution, return it with the assignment
for S.

(b) Collapsing nodes together-Tree decomposition

 Construction of tree decomposition the constraint graph is divided into a
set of subproblems, solved independently and the resulting solutions are
combined.

 Works well, when the subproblem is small.

 Requirements of this method are:

• Every variable in the base problem should appear in atleast one of

the subproblem.
• If the binary constraint is exist, then the same constraint must

appear in atleast one of the subproblem. .
• If the variable appears in two subproblems in the tree, it must

appear in every subproblem along the path connecting those
subproblems, that is the variable should be assigned with same
value and constraint in every subproblem.

CS 2351 – Artificial Intelligence UNIT I

Page 102 of 116 CSE– Dhaanish Ahmed College of Engineering

A tree decompositon of the constraint graph

Solution

 If any subproblem has no solution then the entire problem has no

solution.
 If all the sub problems are solvable then a global solution is achieved.

Adversarial Search

Competitive environments, in which the agent’s goals are in conflict, give rise to
adversarial search problems-often known as games.

In our terminology, games means deterministic, fully observable environments
in which there are two agents whose actions must alternate and in which the
utility values at the end of the game are always equal and opposite. For example,
if one player wins a game of chess (+1), the other player necessarily loses (-1).

There are two types of games

1. Perfect Information (Example : chess, checkers)
2. Imperfect Information (Example : Bridge, Backgammon)

In game playing to select the next state, search technique is required. Game
playing itself is considered as a type of search problems. But, how to reduce the
search time to make on a move from one state to another state.

The pruning technique allows us to ignore positions of the search tree that make
no difference to the final choice.

CS 2351 – Artificial Intelligence UNIT I

Page 103 of 116 CSE– Dhaanish Ahmed College of Engineering

Heuristic evaluation function allows us to find the utility (win, loss, and draw)
of a state without doing a complete search.

Optimal Decisions in Games

A Game with two players - Max and Min.

• Max, makes a move first by choosing a high value and take turns moving

until the game is over
• Min, makes a move as a opponent and tries to minimize the max player score,

until the game is over.

At the end of the game (goal state or time), points are awarded to the winner.

The components of game playing are :

Initial state - Which includes the board position and an indication of whose
move and identifies the player to the move.
Successor function - which returns a list of (move, state) pairs, each indicating a
legal move and the resulting state.

Terminal test - Which determines the end state of the game. States where the
game has ended are called terminal states.

Utility function (also called an objective function or payoff function), - which
gives a numeric value for the terminal states. In chess, the outcome is a win, loss,
or draw, with values +1, -1, or 0. Some games have a wider , variety of possible
outcomes; the payoffs in backgammon range from +192 to -192.

The initial state and the legal moves for each side define the game tree for the
game

Example : Tic – Tac – Toe (Noughts and Crosses)

From the initial state, MAX has nine possible moves. Play alternates between
MAX'S placing an X and MIN'S placing an O until we reach leaf nodes
corresponding to ter.mina1 states such that one player has three in a row or all
the squares are filled.

CS 2351 – Artificial Intelligence UNIT I

Page 104 of 116 CSE– Dhaanish Ahmed College of Engineering

Initial State : Initial Board Position

Successor Function : Max placing X’s in the empty square
 Min placing O’s in the empty square

Goal State : We have three different types of goal state, any one to be reached.

i) If the O’s are placed in one column, one row (or) in the diagonal
continuously then, it is a goal state of min player. (Won by Min Player)

ii) If the X’s are placed in one column, one row (or) in the diagonal
continuously then, it is a goal state of min player. (Won by Max Player)

iii) If the all the nine squares are filled by either X or O and there is no win
condition by Max and Min player then it is a state of Draw between
two players.

Some terminal states

Won by Min Players

X O X
 O
 O

Won by Max Players

X O X
 X
X 0 O

Draw between two Players

X O X
O O X
X O O

Utility function

Win = 1 Draw =0 Loss = -1

CS 2351 – Artificial Intelligence UNIT I

Page 105 of 116 CSE– Dhaanish Ahmed College of Engineering

A (partial) search tree for the game of tic-tac-toe

Optimal strategies

In a normal search problem, the optimal solution would be a sequence of moves
leading to a goal state-a terminal state that is a win. In a game, an optimal
strategy leads to outcomes at least as good as any other strategy when one is
playing an infallible opponent

Given a game tree, the optimal strategy can be determined by examining the
minimax value of each node, which we write as MINIMAX- VALUE(n).

MINIMAX- VALUE(n) =

 UTILITY(n) if n is a terminal state

Max ∈s successors(n) MAX-VALUE(s) if n is a MAX node
Min ∈s Successors(n) MAX-VALUE(s) if n is a MIN node

Even a simple game like tic-tac-toe is too complex for us to draw the entire game
tree.

The possible moves for MAX at the root node are labeled al, a2, and a3. The
possible replies to a1 for MIN are b1, b2, b3, and so on.

CS 2351 – Artificial Intelligence UNIT I

Page 106 of 116 CSE– Dhaanish Ahmed College of Engineering

A Two Ply Game Tree

∆ - Moves by Max Player

∇ - Moves by Min Player

• The terminal nodes show the utility values for MAX;
• The other nodes are labeled with their minimax values.
• MAX'S best move at the root is al

• MIN'S best reply is b

, because it leads to the successor with
the highest minimax value

l

• The root node is a MAX node; its successors have minimax values 3, 2,
and 2; so it has a minimax value of 3.

, because it leads to the successor with the lowest
minimax value.

• The first MIN node, labeled B, has three successors with values 3, 12,
and 8, so its minimax value is 33

The minimax algorithm

The minimax algorithm computes the minimax decision from the current state.
It uses a simple recursive computation of the minimax values of each successor
state, directly implementing the defining equations. The recursion proceeds all
the way down to the leaves of the tree, and then the minimax values are backed
up through the tree as the recursion unwinds.

For Example

CS 2351 – Artificial Intelligence UNIT I

Page 107 of 116 CSE– Dhaanish Ahmed College of Engineering

The algorithm first recurses down to the three bottom left nodes, and uses the
UTILITY function on them to discover that their values are 3, 12, and 8
respectively. Then it takes the minimum of these values, 3, and returns it as the
backed-up value of node B. A similar process gives the backed up values of 2 for
C and 2 for D. Finally, we take the maximum of 3,2, and 2 to get the backed-up
value of 3 for the root node.

An algorithm for minimax decision

• Generate the whole game tree, all the way down to the terminal state.
• Apply the utility function to each terminal state to get its value.
• Use utility functions of the terminal state one level higher than the current

value to determine Max or Min value.
• Minimax decision maximizes the utility under the assumption that the

opponent will play perfectly to minimize the max player score.

Complexity : If the maximum depth of the tree is m, and there are b legal moves
at each point then the time complexity of the minimax algorithm is O(bm). This
algorithm is a depth first search, therefore the space requirements are linear in m

function MINIMAX-DECISION (state) returns an action
inputs: state, current state in game

v <- MAX-VALUE(state)
return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v<- -∞
for a, s in SUCCESSORS(state) do
v <- MAX(v, MIN-VALUE(s))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V <- ∞
for a, s in SUCCESSORS(state)do'
v <- MIN(v, MAX-VALUE(s))
return v

CS 2351 – Artificial Intelligence UNIT I

Page 108 of 116 CSE– Dhaanish Ahmed College of Engineering

and b. For real games the calculation of time complexity is impossible, however
this algorithm will be a good basis for game playing.

Completeness : It the tree is finite, then it is complete.

Optimality : It is optimal when played against an optimal opponent

ALPHA - BETA PRUNING

Pruning - The process of eliminating a branch of the search tree from
consideration without examining is called pruning.

The two parameters of pruning technique are:

Alpha (α) : Best choice for the value of MAX along the path (or) lower bound on
the value that on maximizing node may be ultimately assigned.

Beta (β) : Best choice for the value of MIN along the path (or) upper bound on
the value that a minimizing node may be ultimately assigned.

Alpha - Beta pruning : The α and β values are applied to a minimax tree, it
returns the same move as minimax, but prunes away branches that cannot
possibly influence the final decision is called Alpha - Beta pruning (or) Cutoff
Consider again the two-ply game tree from

Let the two unevaluated successors of node C have values x and y and let z be
the minimum of x and y. The value of the root node is given by

MINIMAX-VALUE(ROOT)=max((min(3,12,8),min(2,x,y),min(l4,5,2))
= max(3, min(2, x, y), 2)
= max(3, z, 2) where z <=2
= 3.

In other words, the value of the root and hence the minimax decision are
independent of the values of the pruned leaves x and y.

CS 2351 – Artificial Intelligence UNIT I

Page 109 of 116 CSE– Dhaanish Ahmed College of Engineering

Stages in the calculation of the optimal decision for the game tree

(a) The first leaf below B has the value 3. Hence, B, which is a MIN node, has a
value of at most 3

(b) The second leaf below B has a value of 12; MIN would avoid this move, so the
value of B is still at most 3

c) The third leaf below B has a value of 8; we have seen all B's successors, so the
value of B is exactly 3. Now, we can infer that the value of the root is at least 3,
because MAX has a choice worth 3 at the root.

(d) The first leaf below C has the value 2. Hence, C, which is a MIN node, has a
value of at most 2. But we know that B is worth 3, so MAX would never choose C.
Therefore, there is no point in looking at the other successors of C. This is an
example of alpha-beta pruning.

(e) The first leaf below D has the value 14, so D is worth atmost 14. This is still
higher than MAX'S best alternative (i.e., 3), so we need to keep exploring D's
successors. Notice also that we now have bounds on all of the successors of the
root, so the root's value is also at most 14.

CS 2351 – Artificial Intelligence UNIT I

Page 110 of 116 CSE– Dhaanish Ahmed College of Engineering

(f) The second successor of D is worth 5, so again we need to keep exploring. The
third successor is worth 2, so now D is worth exactly 2. MAX'S decision at the
root is to move to B, giving a value of 3.

The alpha-beta search algorithm

function ALPHA-BETA-SEARCH (returns an) action
inputs: state, current state in game
v<- M A X -V A L U E (State,- α , +α)
return the action in SUCCESSORS(state) with value v

CS 2351 – Artificial Intelligence UNIT I

Page 111 of 116 CSE– Dhaanish Ahmed College of Engineering

Effectiveness of Alpha – Beta Pruning

Alpha - Beta pruning algorithm needs to examine only O(bd/2) nodes to pick the
best move, instead of O(bd

β
) with minimax algorithm, that is effective branching

factor is instead of b.

Imperfect Real Time Decisions

The minimax algorithm generates the entire game search space, whereas the
alpha-beta algorithm allows us to prune large parts of it. However, alpha-beta
still has to search all the way to terminal states for at least a portion of the search
space. This depth is usually not practical, because moves must be made in a
reasonable amount of time-typically a few minutes at most.

Shannon’s proposed instead that programs should cut off the search earlier and
apply a heuristic evaluation function to states in the search, effectively turning
non terminal nodes into terminal leaves.

• The utility function is replaced by an Evaluation function

• The terminal test is replaced by a Cut-off test

function MAX - VALUE (state, α , β) returns α utility
value
inputs: state, current state in game
α , the value of the best alternative for MAX along the
path to state
β , the value of the best alternative for MIN along the
path to state
if TERMINAL-TEST(state) then return) UTILITY(s t a t e
)
v<- -∞
for α , S in S U C C E S S O R S (state) do
v <- MAX(v,MIN-VALUE(S, α , β))
if v >= β then return v
α <- MAx(α , v)
return v

function MIN - VALUE (state, α , β) returns α utility
value
inputs: state, current state in game
α , the value of the best alternative for MAX along the
path to state
β , the value of the best alternative for MIN along the
path to state
if TERMINAL-TEST(state) then return) UTILITY(s t a t e
)
v<- +∞
for α , S in S U C C E S S O R S (state) do
v <- MIN(v,MAX-VALUE(S, α , β))
if v <= α then return v
β <- MIN(β , v)
return v

CS 2351 – Artificial Intelligence UNIT I

Page 112 of 116 CSE– Dhaanish Ahmed College of Engineering

1. Evaluation function

Example: Chess Problem

In chess problem each material (Queen, Pawn, etc) has its own value that is
called as material value. From this depends on the move the evaluation function is
calculated and it is applied to the search tree.

This suggests that the evaluation function should be specified by the rules of
probability.

For example If player A has a 100% chance of winning then its evaluation function
is 1.0 and if player A has a 50% chance of winning, 25% of losing and 25% of
being a draw then the probability is calculated as; 1x0.50 -lxO.25 + OxO.25 =
0.25.

As per this example is concerned player A is rated higher than player B. The
material value, of each piece can be calculated independently with-out
considering other pieces in the board is also called as one kind of evaluation
function and it is named as weighted linear function. It can be expressed as

Eval(s) = w1f1(s) + w2f2(s) + w3f3(s)..... + wnfn (s)
w - Weights of the pieces (1 for Pawn, 3 for Bishop etc)
f - A numeric value which represents the numbers of each kind of piece on the
board.

2. Cut - off test

To perform a cut-off test, an evaluation function, should be applied to positions
that are quiescent, that is a position that will not swing in bad value for long time
in the search tree is known as waiting for quiescence.

Quiescence search - A search which is restricted to consider only certain types of
moves, such as capture moves, that will quickly resolve the uncertainties in the
position.

Horizon problem - When the program is facing a move by the opponent that
causes serious damage and is ultimately unavoidable

Example:
1. Beginning of the search - one ply

CS 2351 – Artificial Intelligence UNIT I

Page 113 of 116 CSE– Dhaanish Ahmed College of Engineering

2. This diagram shows the situation of horizon problem that is when one level is
generated from B, it causes bad value for B

3. When one more successor level is generated from E and F and situation comes
down and the value of B is retained as a good move. The time B is waited for this
situation is called waiting for quiescence.

Games That Include An Element Of Chance

Backgammon Game

Backgammon is a typical game that combines luck and skill. Dice are rolled at
the beginning of a player's turn to determine the legal moves.

CS 2351 – Artificial Intelligence UNIT I

Page 114 of 116 CSE– Dhaanish Ahmed College of Engineering

Goal State

The goal of the game is to move all one's pieces off the board. White moves
clockwise toward 25, and black moves counterclockwise toward 0

Successor Function or Operator

Move to any position except where two or more of the opponent pieces.
If it moves to a position with one opponent piece it is captured and again it has
to start from Beginning

Task : In the position shown, White has rolled 6-5. So Find out the legal moves
for the set of the dice thrown as 6 and 5.

Solution :

There are Four legal moves. They are

 (5-11,5-10)
 (5-11, 19-24)
 (10-16,5-10)
 (5-11,11-16)

A game tree in backgammon must include chance nodes in addition to MAX and
MIN nodes. Chance nodes are shown as circles. The branches leading from each
chance node denote the possible dice rolls, and each is labeled with the roll and
the chance that it will occur. There are 36 ways to roll two dice, each equally

CS 2351 – Artificial Intelligence UNIT I

Page 115 of 116 CSE– Dhaanish Ahmed College of Engineering

likely; but because a 6-5 is the same as a 5-6, there are only 21 distinct rolls. The
six doubles (1-1 through 6-6) have a 1/36 chance of coming up, the other 15
distinct rolls a 1/18 chance each.

The resulting positions do not have definite minimax values. Instead, we have to
only calculate the expected value, where the expectation is taken over all the
possible dice rolls that could occur.

Terminal nodes and MAX and MIN nodes (for which the dice roll is known)
work exactly the same way as before; chance nodes are evaluated by taking the
weighted average of the values resulting from all possible dice rolls, that is,

EXPECTIMINIMAX(n)=

UTILITY(n) if n is a terminal state
Max ∈s successors(n) EXPECTIMINIMAX(S) if n is a MAX node
Min ∈s successors(n)

∑
EXPECTIMINIMAX(S) if n is a MIN node

∈s successors(n) P(s).EXPECTIMINIMAX(S) if n is a chance node

where the successor function for a chance node n simply augments the state of n
with each possible dice roll to produce each successor s and P(s) is the
probability that that dice roll occurs.

Card games

Card games are interesting for many reasons besides their connection with
gambling.

CS 2351 – Artificial Intelligence UNIT I

Page 116 of 116 CSE– Dhaanish Ahmed College of Engineering

Imagine two players, MAX and MIN, playing some practice hands of four-card
two handed bridge with all the cards showing.

The hands are as follows, with MAX to play first:

MAX : 6 , 6 , 9 , 8

MIN : 2 , 4 , 10 , 5

Suppose that MAX leads wiht 9. MIN must now follow suit, playing either
with 10 or 5 . MIN plays with 10 and wins the trick.

MIN goes next turn leads the with 2. MAX has no spades (and so cannot win
the trick) and therefore must throw away some card. The obvious choice is the

6 because the other two remaining cards are winners.

Now, whichever card MIN leads for the next trick, MAX will win both remaining
tricks and the game will be tied at two tricks each.

State Of The Art Game Programs

Designing game playing programs has a dual purpose

1. To better understand how to choose actions in complex domain with
uncertain outcomes

2. To develop high performance system for the particular game

Some of the Game playing in AI

1. Chess
2. Checkers
3. Othello
4. Backgammon
5. Go
6. Bridge.

	Philosophy(428 B.C. – present)
	Aristotle (384-322 B.C.) was the first to formulate a precise set of laws governing the rational part of the mind. He developed an informal system of syllogisms for proper reasoning, which allowed one to generate conclusions mechanically, given initia...
	History of Artificial Intelligence
	CONSTRAINT SATISFACTION PROBLEMS(CSP)
	Backtracking Search for CSPs
	The term backtracking search is used for depth-first search that chooses values for one variable at a time and backtracks when a variable has no legal values left to assign.
	Part of search tree generated by simple backtracking for the map coloring problem

